Artificial Intelligence for Patient Support: Assessing Retrieval-Augmented Generation for Answering Postoperative Rhinoplasty Questions

可读性 威尔科克森符号秩检验 工作量 计算机科学 人工智能 医学 自然语言处理 内科学 曼惠特尼U检验 操作系统 程序设计语言
作者
Ariana Genovese,Srinivasagam Prabha,Sahar Borna,Cesar A. Gomez-Cabello,Syed Ali Haider,Maissa Trabilsy,Cui Tao,Antonio J. Forte
标识
DOI:10.20944/preprints202412.0297.v1
摘要

(1) Background: Artificial Intelligence (AI) can enhance patient education, but pre-trained models like ChatGPT provide inaccuracies. This study assessed a potential solution, Retrieval-Augmented Generation (RAG), for answering postoperative rhinoplasty inquiries; (2) Methods: Gemi-ni-1.0-Pro-002, Gemini-1.5-Flash-001, Gemini-1.5-Pro-001, and PaLM 2 were developed and posed 30 questions, using RAG to retrieve from plastic surgery textbooks. Responses were evaluated for accuracy (1-5 scale), comprehensiveness (1-3 scale), readability (FRE, FKGL), and understandabil-ity/actionability (PEMAT). Analysis included Wilcoxon rank sum, Armitage trend tests, and pair-wise comparisons; (3) Results: AI models performed well on straightforward questions but struggled with complexities (connecting "getting the face wet" with showering), leading to a 30.8% nonre-sponse rate. 41.7% of responses were completely accurate. Gemini-1.0-Pro-002 was more com-prehensive (p < 0.001) while PaLM 2 was less actionable (p < 0.007). Readability was poor (mean FRE: 40-49). Understandability averaged 0.7. No significant differences were found in accuracy, readability, or understandability among models; (4) Conclusions: RAG-based AI models show promise but are not yet suitable as standalone tools due to nonresponses and limitations in reada-bility and handling nuanced questions. Future efforts should focus on improvements in contextual understanding. With optimization, RAG-based AI could reduce surgeons' workload and enhance patient satisfaction, but it is currently unsafe for independent clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金金金完成签到,获得积分10
刚刚
温煦发布了新的文献求助10
1秒前
吕小软完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
3秒前
3秒前
YuxinChen发布了新的文献求助10
3秒前
4秒前
tzy完成签到,获得积分10
4秒前
霜白完成签到,获得积分10
5秒前
陆莹完成签到,获得积分10
5秒前
112完成签到,获得积分10
5秒前
灶鲜森发布了新的文献求助10
5秒前
所所应助SUnnnnn采纳,获得10
6秒前
baiye发布了新的文献求助10
7秒前
ahuyv完成签到,获得积分10
7秒前
毓毓发布了新的文献求助10
8秒前
归海亦云完成签到,获得积分20
8秒前
9秒前
11秒前
11秒前
所所应助hbhbj采纳,获得10
13秒前
hj456完成签到,获得积分10
13秒前
14秒前
Ava应助爱听歌的悒采纳,获得10
16秒前
酷波er应助黄梓同采纳,获得10
16秒前
ejonlove发布了新的文献求助30
17秒前
sam发布了新的文献求助50
18秒前
bo完成签到,获得积分10
19秒前
19秒前
21秒前
22秒前
Yang完成签到,获得积分10
22秒前
浮游应助hbhbj采纳,获得10
23秒前
23秒前
24秒前
浮游应助hbhbj采纳,获得10
25秒前
Lucas应助夜白采纳,获得10
25秒前
酷波er应助哈哈哈哈哈哈采纳,获得10
26秒前
Cwin完成签到 ,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306416
求助须知:如何正确求助?哪些是违规求助? 4452285
关于积分的说明 13854176
捐赠科研通 4339713
什么是DOI,文献DOI怎么找? 2382823
邀请新用户注册赠送积分活动 1377697
关于科研通互助平台的介绍 1345355