Framework for adoption of generative AI for information search of retail products and services

业务 零售额 生成语法 营销 生成模型 计算机科学 人工智能
作者
Astha Sanjeev Gupta,Jaydeep Mukherjee
出处
期刊:International Journal of Retail & Distribution Management [Emerald Publishing Limited]
标识
DOI:10.1108/ijrdm-05-2024-0203
摘要

Purpose Generative artificial intelligence (GAI) can disrupt how consumers search for information on retail products/services online by reducing information overload. However, the risk associated with GAI is high, and its widespread adoption for product/service information search purposes is uncertain. This study examined psychological drivers that impact consumer adoption of GAI platforms for retail information search. Design/methodology/approach We conducted 31 in-depth, semi-structured interviews with the lead GAI users regarding product/service information search. The data were analysed using a grounded theory paradigm and thematic analysis. Findings Results show that consumers experience uncertainty about GAI’s functioning. Their trust in GAI impacts the adoption and usage of this technology for information search. GAI provides unique settings to investigate potential additional factors, leveraging UTAUT as a theoretical basis. This study identified three overarching themes – technology characteristics, technology readiness and information characteristics – as possible drivers of adoption. Originality/value Consumers seek exhaustive and reliable information for purchase decisions. Due to the abundance of online information, they experience information overload. GAI platforms reduce information overload by providing synthesized and customized product/service search results. However, its reliability, trustworthiness and accuracy have been questioned. The functioning of GAI is opaque; the popular technology adoption model such as UTAUT is general and is unlikely to explain in totality the adoption and usage of GAI. Hence, this research provides the adoption drivers for this unique technology context. It identifies the determinants/antecedents of relevant UTAUT variables and develops an integrated conceptual model explaining GAI adoption for retail information search.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dingyang41发布了新的文献求助10
刚刚
7123发布了新的文献求助10
1秒前
小徐发布了新的文献求助10
1秒前
失眠夏山完成签到,获得积分10
1秒前
yang完成签到,获得积分0
2秒前
4秒前
4秒前
zjq完成签到,获得积分10
5秒前
文迪厄尔发布了新的文献求助30
5秒前
qsyslh完成签到,获得积分10
6秒前
7秒前
8秒前
Nansen完成签到 ,获得积分10
8秒前
90无脸男发布了新的文献求助30
9秒前
情怀应助高大毛衣采纳,获得10
9秒前
Owen应助洋芋锅巴采纳,获得10
10秒前
cosy发布了新的文献求助10
11秒前
11秒前
斯文败类应助qsyslh采纳,获得10
11秒前
12秒前
agent完成签到 ,获得积分10
14秒前
虚幻沛文完成签到 ,获得积分10
15秒前
饿得咕咕地完成签到,获得积分10
16秒前
小徐完成签到,获得积分10
16秒前
王梦涵完成签到,获得积分10
18秒前
勤恳风华完成签到,获得积分10
18秒前
18秒前
困困发布了新的文献求助10
18秒前
18秒前
高大毛衣完成签到,获得积分20
19秒前
欣喜代秋发布了新的文献求助10
19秒前
苏苏完成签到 ,获得积分10
19秒前
文迪厄尔发布了新的文献求助30
20秒前
小耗子完成签到,获得积分10
20秒前
科研通AI5应助喵了个咪采纳,获得10
20秒前
20秒前
格桑梅朵应助阿言采纳,获得200
21秒前
美满的冬卉完成签到 ,获得积分10
21秒前
23秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Les dinosaures (Carnosaures, Allosauridés, Sauropodes, Cétosauridés) du Jurassique Moyen de Cerro Cóndor (Chubut, Argentina). Annales de Paléontologie (Vert.-Invert.) 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825290
求助须知:如何正确求助?哪些是违规求助? 3367618
关于积分的说明 10446647
捐赠科研通 3086928
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816756
科研通“疑难数据库(出版商)”最低求助积分说明 769937