ENGINEERING HARD-SOFT TISSUE INTERFACES VIA 3D PRINTING AND MELT ELECTROWRITING

3D打印 硬组织 组织工程 软组织 计算机科学 材料科学 工程制图 生物医学工程 工艺工程 工程类 复合材料 外科 医学
作者
Małgorzata K. Włodarczyk‐Biegun
标识
DOI:10.1302/1358-992x.2025.6.077
摘要

Hard-soft tissue interfaces, such as tendon-to-bone or cartilage-to-bone connections, are critical for musculoskeletal function. These interfaces exhibit gradual transitions in architecture, mechanics, composition, and biochemical signaling over micro- to nano-scale dimensions, making them challenging to regenerate after injury and difficult to replicate in laboratory conditions. In our studies, we aim to closely mimic the gradient structure of native hard-soft tissue interfaces using advanced biofabrication techniques. By employing 3D printing and melt electrowriting, we strive to create biomimetic gradient structures with precise control over material deposition at the micrometer scale. We designed graded and smooth transitional scaffolds with controlled architecture and material composition, followed by cell seeding with different cell types. The constructs were cultured under both static and dynamic conditions, including cyclic mechanical stretching, to assess their impact on cell behavior and tissue formation. Our findings demonstrate that the substrate designs and mechanical stimulation significantly influence cellular responses (Figure 1). Tenocytes responded distinctly to cyclic mechanical loading, showing enhanced proliferation and alignment, while osteoblasts exhibited a less pronounced response to mechanical cues. These observations highlight the importance of mechanical microenvironments in directing cell fate at tissue interfaces. Our study paves the way for gradient-functional scaffold design, facilitating the engineering of complex, hierarchical, and heterogeneous tissue interfaces. The combination of melt electrowriting, 3D printing and mechanical stimulation offers a promising approach to recapitulating native tissue gradients, ultimately contributing to improved strategies for orthopedic regeneration. For any figures or tables, please contact the authors directly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
JinYang发布了新的文献求助10
6秒前
冷笑完成签到,获得积分10
8秒前
safari发布了新的文献求助10
9秒前
江苏大猩猩关注了科研通微信公众号
9秒前
9秒前
CC应助nnnd77采纳,获得10
10秒前
帅气巧荷完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
Yara.H发布了新的文献求助10
13秒前
14秒前
lemon发布了新的文献求助10
14秒前
15秒前
1212发布了新的文献求助10
15秒前
SSD发布了新的文献求助10
16秒前
Antares完成签到,获得积分10
16秒前
桐桐应助玩命的靖仇采纳,获得10
16秒前
骀荡发布了新的文献求助10
17秒前
安静的采柳完成签到 ,获得积分10
17秒前
輕語完成签到,获得积分10
18秒前
刘晓龙发布了新的文献求助10
20秒前
20秒前
hang发布了新的文献求助10
21秒前
23秒前
Akim应助tingting采纳,获得10
23秒前
小张爱学习完成签到,获得积分10
25秒前
26秒前
JinYang完成签到,获得积分10
28秒前
海海海星派大星完成签到,获得积分20
28秒前
科研通AI2S应助jal采纳,获得10
28秒前
29秒前
骀荡完成签到,获得积分10
30秒前
几斗完成签到 ,获得积分10
32秒前
33秒前
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702501
求助须知:如何正确求助?哪些是违规求助? 4070325
关于积分的说明 12585733
捐赠科研通 3770634
什么是DOI,文献DOI怎么找? 2082510
邀请新用户注册赠送积分活动 1109917
科研通“疑难数据库(出版商)”最低求助积分说明 987984