TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images

医学 分割 人工智能 掷骰子 放射科 模式识别(心理学) 核医学 统计 计算机科学 数学
作者
Jakob Wasserthal,Hanns‐Christian Breit,Manfred T. Meyer,Maurice Pradella,Daniel Hinck,Alexander Sauter,Tobias Heye,Daniel T. Boll,Joshy Cyriac,Shan Yang,Michael Bach,Martin Segeroth
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (5) 被引量:306
标识
DOI:10.1148/ryai.230024
摘要

Purpose To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images. Materials and Methods In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model’s performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes. Results The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; P < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [rs = 0.64; P < .001]; age and mean attenuation of the autochthonous dorsal musculature [rs = −0.74; P < .001]). Conclusion The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available. Keywords: CT, Segmentation, Neural Networks Supplemental material is available for this article. © RSNA, 2023 See also commentary by Sebro and Mongan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H1lb2rt完成签到 ,获得积分10
2秒前
roy_chiang完成签到,获得积分0
2秒前
3秒前
杜11发布了新的文献求助10
3秒前
脑洞疼应助ws51823808采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Ryan发布了新的文献求助50
6秒前
龙傲天发布了新的文献求助10
6秒前
碧蓝的机器猫完成签到 ,获得积分10
6秒前
蒙太奇发布了新的文献求助10
8秒前
呆呆的豆豆兵完成签到 ,获得积分10
10秒前
龙觅星峰完成签到,获得积分10
12秒前
深情安青应助大意的初雪采纳,获得10
16秒前
16秒前
xiaosui完成签到 ,获得积分10
17秒前
hukeyan完成签到,获得积分10
17秒前
李爱国应助Shelley采纳,获得10
18秒前
科研通AI5应助热沙来提采纳,获得10
18秒前
WFLLL完成签到,获得积分10
21秒前
隐形曼青应助科研小菜鸟i采纳,获得10
22秒前
25秒前
燃之一手完成签到 ,获得积分10
25秒前
xdd完成签到 ,获得积分10
25秒前
嘻嘻完成签到,获得积分10
26秒前
dudu完成签到 ,获得积分10
28秒前
Muller完成签到,获得积分10
28秒前
GXLong完成签到,获得积分10
28秒前
31秒前
诗亭发布了新的文献求助10
31秒前
31秒前
32秒前
32秒前
LMY完成签到 ,获得积分10
33秒前
LNE发布了新的文献求助10
36秒前
科研小白发布了新的文献求助10
36秒前
Shelley发布了新的文献求助10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745