A novel combinational response mechanism for dynamic multi-objective optimization

人口 数学优化 计算机科学 趋同(经济学) 机制(生物学) 突变 最优化问题 进化算法 柯西分布 算法 数学 统计 哲学 生物化学 化学 人口学 认识论 社会学 经济 基因 经济增长
作者
Zahra Aliniya,Seyed Hossein Khasteh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120951-120951 被引量:2
标识
DOI:10.1016/j.eswa.2023.120951
摘要

Many real-world multi-objective optimization problems are dynamic. These problems require an optimization algorithm to quickly track optimal solutions after changing the environment. In most dynamic multi-objective optimization algorithms, response mechanisms are used to generate the initial population after the environment changes. In the present study, a novel Combinational Response Mechanism (CRM) is proposed, which consists of three parts. After detecting the environmental change, in the first part, RM-rand, a subpopulation of random solutions is generated using DE/rand/1 operator and Cauchy mutation. The second part, RM-Tr&SP, predicts a subpopulation of solutions using transfer learning (TL) and special points. The third part, RM-M, uses the best solutions of the previous environment with a propagation method based on crowding distance to generate the third subpopulation. A combination of the solutions of these three subpopulations is considered the initial population of the new environment. The proposed response mechanism can converge the set of solutions while maintaining their diversity. Thus, generating solutions with good convergence and diversity makes the initial population more adaptable to the new environment. The examinations were done on 24 common test functions. The experimental results indicate that the performance of the proposed response mechanism in dynamic multi-objective optimization is competitive with five advanced evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听靖发布了新的文献求助10
刚刚
2024dsb完成签到 ,获得积分10
刚刚
刚刚
乐乐应助科研小民工采纳,获得100
1秒前
1秒前
藜誌完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
17858925711关注了科研通微信公众号
2秒前
酷波er应助yoyo采纳,获得10
2秒前
高高访文完成签到,获得积分10
3秒前
科研通AI5应助欣欣杨采纳,获得10
3秒前
Sun发布了新的文献求助10
4秒前
希望天下0贩的0应助jeronimo采纳,获得10
4秒前
xy发布了新的文献求助10
4秒前
SciGPT应助weizhao采纳,获得10
4秒前
一只橙子完成签到,获得积分10
4秒前
6秒前
友好的海之完成签到,获得积分10
6秒前
wanci应助幸福广山采纳,获得10
7秒前
zhoup完成签到,获得积分10
8秒前
刘源文发布了新的文献求助10
9秒前
10秒前
闾丘惜寒完成签到,获得积分10
10秒前
10秒前
10秒前
Cocoa发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
大胆的问夏完成签到,获得积分10
13秒前
宋德宇完成签到,获得积分10
13秒前
ll应助故意的初阳采纳,获得10
13秒前
OnionJJ完成签到,获得积分10
13秒前
娜娜完成签到 ,获得积分20
13秒前
煮一碗粥完成签到,获得积分10
14秒前
文静的绯完成签到,获得积分10
14秒前
我不想不想完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828