Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:19
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷策发布了新的文献求助30
1秒前
www999完成签到,获得积分10
2秒前
dandan完成签到,获得积分10
2秒前
情怀应助顽强的小刘采纳,获得30
2秒前
重要凝芙完成签到,获得积分10
3秒前
可乐完成签到,获得积分20
3秒前
小马甲应助要减肥的罡采纳,获得20
3秒前
3秒前
YQ完成签到,获得积分10
4秒前
lling完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
黑色幽默发布了新的文献求助10
6秒前
共享精神应助zyy采纳,获得10
6秒前
危机的易烟完成签到,获得积分10
6秒前
超帅的又槐完成签到,获得积分10
7秒前
8秒前
Lionking发布了新的文献求助30
8秒前
9秒前
9秒前
乐乐应助淡然青筠采纳,获得10
10秒前
10秒前
背后白梦完成签到,获得积分10
10秒前
彭雄武发布了新的文献求助10
11秒前
芋泥发布了新的文献求助10
11秒前
六月歌者完成签到,获得积分20
11秒前
11秒前
领导范儿应助纯真小伙采纳,获得10
11秒前
12秒前
13223456发布了新的文献求助10
12秒前
JamesPei应助Stephen的小米枚采纳,获得10
12秒前
Lionnn发布了新的文献求助10
13秒前
研友_VZG7GZ应助Lionking采纳,获得10
13秒前
没有梦想发布了新的文献求助10
13秒前
tian发布了新的文献求助10
13秒前
卜娜娜发布了新的文献求助10
14秒前
善学以致用应助可靠豆芽采纳,获得10
14秒前
14秒前
菜系发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692