Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses

萧条(经济学) 病理生理学 精神科 共病 重性抑郁障碍 医学 生物信息学 生物 内科学 认知 宏观经济学 经济
作者
Thomas D. Als,Mitja Kurki,Jakob Grove,Georgios Voloudakis,Karen Therrien,Elisa Tasanko,Trine Tollerup Nielsen,Joonas Naamanka,Kumar Veerapen,Daniel F. Levey,Jaroslav Bendl,Jonas Bybjerg‐Grauholm,Biao Zeng,Ditte Demontis,Anders Rosengren,Georgios Athanasiadis,Marie Bækved-Hansen,Per Qvist,G. Bragi Walters,Thorgeir E. Thorgeirsson
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (7): 1832-1844 被引量:214
标识
DOI:10.1038/s41591-023-02352-1
摘要

Depression is a common psychiatric disorder and a leading cause of disability worldwide. Here we conducted a genome-wide association study meta-analysis of six datasets, including >1.3 million individuals (371,184 with depression) and identified 243 risk loci. Overall, 64 loci were new, including genes encoding glutamate and GABA receptors, which are targets for antidepressant drugs. Intersection with functional genomics data prioritized likely causal genes and revealed new enrichment of prenatal GABAergic neurons, astrocytes and oligodendrocyte lineages. We found depression to be highly polygenic, with ~11,700 variants explaining 90% of the single-nucleotide polymorphism heritability, estimating that >95% of risk variants for other psychiatric disorders (anxiety, schizophrenia, bipolar disorder and attention deficit hyperactivity disorder) were influencing depression risk when both concordant and discordant variants were considered, and nearly all depression risk variants influenced educational attainment. Additionally, depression genetic risk was associated with impaired complex cognition domains. We dissected the genetic and clinical heterogeneity, revealing distinct polygenic architectures across subgroups of depression and demonstrating significantly increased absolute risks for recurrence and psychiatric comorbidity among cases of depression with the highest polygenic burden, with considerable sex differences. The risks were up to 5- and 32-fold higher than cases with the lowest polygenic burden and the background population, respectively. These results deepen the understanding of the biology underlying depression, its disease progression and inform precision medicine approaches to treatment. A genome-wide meta-analysis of data from six US and European cohorts involving 1.3 million individuals identifies 243 genetic variants associated with risk and pathophysiology of depression, which is used to develop polygenic risk scores for the prediction of depression recurrence and comorbid psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
4秒前
ajiwjn发布了新的文献求助30
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
猩猩发布了新的文献求助10
10秒前
在水一方应助小麦ime采纳,获得10
11秒前
odinsnow发布了新的文献求助10
11秒前
WSYang完成签到,获得积分10
11秒前
李顺杰发布了新的文献求助10
12秒前
虚幻向秋完成签到,获得积分10
12秒前
AWESOME Ling发布了新的文献求助10
13秒前
orixero应助悲凉的世倌采纳,获得30
13秒前
乐乐应助pbj采纳,获得10
14秒前
14秒前
yang发布了新的文献求助10
16秒前
丘比特应助载荷采纳,获得10
17秒前
AWESOME Ling完成签到,获得积分10
18秒前
Hello应助文医生采纳,获得10
19秒前
19秒前
皮皮发布了新的文献求助10
20秒前
ajiwjn完成签到,获得积分10
20秒前
灰太狼完成签到 ,获得积分10
20秒前
清蒸深海鱼完成签到,获得积分10
20秒前
123完成签到,获得积分10
23秒前
24秒前
桃喜芒芒完成签到,获得积分20
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
传奇3应助odinsnow采纳,获得10
26秒前
爆米花应助enolgoy采纳,获得30
26秒前
26秒前
27秒前
27秒前
小武同学发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084