Interpretable artificial neural networks for retrospective QbD of pharmaceutical tablet manufacturing based on a pilot-scale developmental dataset

医药制造业 压片 设计质量 人工神经网络 计算机科学 赋形剂 工艺工程 制药工业 过程(计算) 质量(理念) 制造工程 数据挖掘 人工智能 工程类 粒径 化学 哲学 化学工程 色谱法 生物信息学 操作系统 认识论 药理学 生物 医学
作者
Brigitta Nagy,Ágnes Szabados-Nacsa,Gergő Fülöp,Anikó Turák Nagyné,Dorián László Galata,Attila Farkas,Lilla Alexandra Mészáros,Zsombor Kristóf Nagy,György Marosi
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:633: 122620-122620 被引量:15
标识
DOI:10.1016/j.ijpharm.2023.122620
摘要

As the pharmaceutical industry increasingly adopts the Pharma 4.0. concept, there is a growing need to effectively predict the product quality based on manufacturing or in-process data. Although artificial neural networks (ANNs) have emerged as powerful tools in data-rich environments, their implementation in pharmaceutical manufacturing is hindered by their black-box nature. In this work, ANNs were developed and interpreted to demonstrate their applicability to increase process understanding by retrospective analysis of developmental or manufacturing data. The in vitro dissolution and hardness of extended-release, directly compressed tablets were predicted from manufacturing and spectroscopic data of pilot-scale development. The ANNs using material attributes and operational parameters provided better results than using NIR or Raman spectra as predictors. ANNs were interpreted by sensitivity analysis, helping to identify the root cause of the batch-to-batch variability, e.g., the variability in particle size, grade, or substitution of the hydroxypropyl methylcellulose excipient. An ANN-based control strategy was also successfully utilized to mitigate the batch-to-batch variability by flexibly operating the tableting process. The presented methodology can be adapted to arbitrary data-rich manufacturing steps from active substance synthesis to formulation to predict the quality from manufacturing or development data and gain process understanding and consistent product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Zbb4mZ发布了新的文献求助10
1秒前
坚定的松鼠完成签到,获得积分10
1秒前
ddddd完成签到,获得积分10
2秒前
4秒前
huan发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助brd采纳,获得10
6秒前
zby完成签到,获得积分10
8秒前
都是发布了新的文献求助10
9秒前
9秒前
hong发布了新的文献求助10
9秒前
10秒前
10秒前
黑大帅完成签到,获得积分10
10秒前
11秒前
KING发布了新的文献求助10
12秒前
zhaojrr发布了新的文献求助10
13秒前
17秒前
打打应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
23秒前
mmmmm发布了新的文献求助10
24秒前
研友_Zbb4mZ完成签到,获得积分10
24秒前
26秒前
26秒前
JamesPei应助甜晞采纳,获得10
26秒前
27秒前
不加葱的煎饼完成签到,获得积分10
28秒前
28秒前
科研通AI5应助十丶年采纳,获得10
29秒前
mmmmm完成签到,获得积分10
30秒前
暮封发布了新的文献求助10
30秒前
落寞明雪发布了新的文献求助10
31秒前
科研通AI2S应助ntrip采纳,获得10
32秒前
TaoJ发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796465
求助须知:如何正确求助?哪些是违规求助? 3341712
关于积分的说明 10307381
捐赠科研通 3058317
什么是DOI,文献DOI怎么找? 1678107
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838