BehaviorNet: A Fine-grained Behavior-aware Network for Dynamic Link Prediction

计算机科学 快照(计算机存储) 动态网络分析 图形 理论计算机科学 数据挖掘 机器学习 计算机网络 操作系统
作者
Mingyi Liu,Zhiying Tu,Tonghua Su,Xianzhi Wang,Xiaofei Xu,Zhongjie Wang
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:18 (2): 1-26 被引量:5
标识
DOI:10.1145/3580514
摘要

Dynamic link prediction has become a trending research subject because of its wide applications in the web, sociology, transportation, and bioinformatics. Currently, the prevailing approach for dynamic link prediction is based on graph neural networks, in which graph representation learning is the key to perform dynamic link prediction tasks. However, there are still great challenges because the structure of graphs evolves over time. A common approach is to represent a dynamic graph as a collection of discrete snapshots, in which information over a period is aggregated through summation or averaging. This way results in some fine-grained time-related information loss, which further leads to a certain degree of performance degradation. We conjecture that such fine-grained information is vital because it implies specific behavior patterns of nodes and edges in a snapshot. To verify this conjecture, we propose a novel fine-grained behavior-aware network (BehaviorNet) for dynamic network link prediction. Specifically, BehaviorNet adapts a transformer-based graph convolution network to capture the latent structural representations of nodes by adding edge behaviors as an additional attribute of edges. GRU is applied to learn the temporal features of given snapshots of a dynamic network by utilizing node behaviors as auxiliary information. Extensive experiments are conducted on several real-world dynamic graph datasets, and the results show significant performance gains for BehaviorNet over several state-of-the-art (SOTA) discrete dynamic link prediction baselines. Ablation study validates the effectiveness of modeling fine-grained edge and node behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助故意的如冬采纳,获得10
刚刚
陶醉从云发布了新的文献求助10
刚刚
1秒前
rzzzy完成签到,获得积分20
1秒前
1秒前
ding应助kk采纳,获得10
1秒前
sim发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
刘士通完成签到 ,获得积分10
2秒前
2秒前
11发布了新的文献求助10
3秒前
3秒前
科目三应助进击的野草采纳,获得10
3秒前
3秒前
赘婿应助任性的诗兰采纳,获得10
4秒前
爱笑的千寻完成签到,获得积分10
5秒前
5秒前
JamesPei应助狂野的斑马采纳,获得10
6秒前
rzzzy发布了新的文献求助10
7秒前
kingmantj发布了新的文献求助10
7秒前
NexusExplorer应助欣慰元蝶采纳,获得10
7秒前
Lorain发布了新的文献求助10
7秒前
FashionBoy应助sci_zt采纳,获得10
8秒前
8秒前
ohh完成签到,获得积分10
9秒前
9秒前
9秒前
zhiyu发布了新的文献求助10
9秒前
ChrisLynn发布了新的文献求助10
9秒前
Sakura完成签到 ,获得积分10
9秒前
勤恳的一刀完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709704
求助须知:如何正确求助?哪些是违规求助? 5196042
关于积分的说明 15257869
捐赠科研通 4862344
什么是DOI,文献DOI怎么找? 2610072
邀请新用户注册赠送积分活动 1560428
关于科研通互助平台的介绍 1518131