Atomic Eu Substitution in Cu 2 O Tailors C 1 and C 2+ Product Selectivity by Frustrated Deep Hydrogenation in Electrochemical CO 2 Reduction

作者
Yang Liu,Xuan Wang,Z. P. Mao,J. Q. Zhang,Meng Li,Dongmei Sun,Yawen Tang,Hao Li,Gengtao Fu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (49): 45808-45821
标识
DOI:10.1021/jacs.5c19360
摘要

The electrochemical CO2 reduction reaction (eCO2RR) is an important method to obtain high-value chemicals; however, selectively tailoring C1 and C2+ products remains a challenge. Herein, we propose a novel and effective rare-earth Eu substitution strategy to tailor the selectivity of C1 and C2+ products on Cu2O sites by frustrated deep hydrogenation in the eCO2RR. The incorporation of atomic Eu into Cu2O can shift the dominant product from C2+ at low Eu content to CH4 at high Eu content. For low Eu-doped Cu2O (LD-Eu/Cu2O), the total Faradaic efficiency (FE) of C2+ products reaches 79.39% with ethylene (C2H4) as the predominant product (FE: 49.27%) in the H-type cell; whereas high Eu-doped Cu2O (HD-Eu/Cu2O) promotes the formation of C1 products, achieving a total FE of 50.25% with methane (CH4) as the main product (FE: 47.21%). Eu substitution for tailoring the selectivity of C1 and C2+ products on the Cu2O site is also verified in the flow cell. Electrochemical in situ characterization and theoretical calculations suggest that low levels of Eu incorporation in Cu2O weakens the π* antibonding interaction over the C═O bond, facilitating C-C coupling to lead the C2+ pathway via the frustrated deep hydrogenation of *CHO; whereas high Eu incorporation in Cu2O strengthens the π* antibonding interaction, facilitating the deep hydrogenation of *CHO to CH4 via the C1 pathway. This work provides a new perspective on tailoring product selectivity by rare-earth-induced frustrated deep hydrogenation during the eCO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助米大王采纳,获得10
1秒前
星辰大海应助米大王采纳,获得10
1秒前
小蘑菇应助natuer采纳,获得30
1秒前
happy发布了新的文献求助10
1秒前
开饭发布了新的文献求助10
2秒前
2秒前
zzzxiangyi发布了新的文献求助10
3秒前
3秒前
jiangyi发布了新的文献求助10
3秒前
4秒前
且放青山远完成签到,获得积分10
5秒前
6秒前
科研通AI6应助wdfddzh采纳,获得10
7秒前
seon完成签到,获得积分10
7秒前
留胡子的凡完成签到,获得积分20
7秒前
Eliauk完成签到,获得积分10
7秒前
CXE完成签到,获得积分10
8秒前
123456789发布了新的文献求助10
9秒前
生动怀蝶完成签到,获得积分10
10秒前
11秒前
熊仔一百完成签到,获得积分0
11秒前
12秒前
JW发布了新的文献求助10
12秒前
英俊的铭应助M123采纳,获得10
12秒前
12秒前
CN完成签到 ,获得积分10
13秒前
14秒前
15秒前
吴下阿萌完成签到 ,获得积分10
15秒前
Dopamine完成签到 ,获得积分10
15秒前
舒服的啤酒完成签到,获得积分20
16秒前
叶叶完成签到,获得积分10
16秒前
武雨寒发布了新的文献求助10
16秒前
16秒前
Shubin828发布了新的文献求助10
17秒前
神明发布了新的文献求助10
17秒前
无花果应助尊敬的苡采纳,获得10
18秒前
JamesPei应助fanxue采纳,获得10
18秒前
善学以致用应助happy采纳,获得10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650