AcuKG: a comprehensive knowledge graph for medical acupuncture

作者
Yiming Li,Xueqing Peng,Suyuan Peng,Jianfu Li,Donghong Pei,Qin Zhang,Yiwei Lu,Yan Hu,Fang Li,Li Zhou,Yongqun He,Cui Tao,Hua Xu,Na Hong
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocaf179
摘要

Abstract Background Acupuncture, a key modality in traditional Chinese medicine, is gaining global recognition as a complementary therapy and a subject of increasing scientific interest. However, fragmented and unstructured acupuncture knowledge spread across diverse sources poses challenges for semantic retrieval, reasoning, and in-depth analysis. To address this gap, we developed AcuKG, a comprehensive knowledge graph that systematically organizes acupuncture-related knowledge to support sharing, discovery, and artificial intelligence–driven innovation in the field. Methods AcuKG integrates data from multiple sources, including online resources, guidelines, PubMed literature, ClinicalTrials.gov, and multiple ontologies (SNOMED CT, UBERON, and MeSH). We employed entity recognition, relation extraction, and ontology mapping to establish AcuKG, with human-in-the-loop to ensure data quality. Two cases evaluated AcuKG’s usability: (1) how AcuKG advances acupuncture research for obesity and (2) how AcuKG enhances large language model (LLM) application on acupuncture question-answering. Results AcuKG comprises 1839 entities and 11 527 relations, mapped to 1836 standard concepts in 3 ontologies. Two use cases demonstrated AcuKG’s effectiveness and potential in advancing acupuncture research and supporting LLM applications. In the obesity use case, AcuKG identified highly relevant acupoints (eg, ST25, ST36) and uncovered novel research insights based on evidence from clinical trials and literature. When applied to LLMs in answering acupuncture-related questions, integrating AcuKG with GPT-4o and LLaMA 3 significantly improved accuracy (GPT-4o: 46% → 54%, P = .03; LLaMA 3: 17% → 28%, P = .01). Conclusion AcuKG is an open dataset that provides a structured and computational framework for acupuncture applications, bridging traditional practices with acupuncture research and cutting-edge LLM technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
舒适清涟完成签到,获得积分10
2秒前
2秒前
小吉完成签到,获得积分10
4秒前
文献狗发布了新的文献求助10
4秒前
4秒前
Jeffery完成签到,获得积分10
6秒前
7秒前
wuya发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
10秒前
淡淡紫蓝发布了新的文献求助30
11秒前
原子发布了新的文献求助10
11秒前
2Y_DADA完成签到,获得积分10
14秒前
三百一十四完成签到 ,获得积分10
14秒前
思源应助lj采纳,获得10
14秒前
15秒前
16秒前
科研通AI6应助文献狗采纳,获得30
16秒前
16秒前
17秒前
17秒前
oc666888完成签到,获得积分10
18秒前
舒服的又菱完成签到,获得积分20
18秒前
而语完成签到,获得积分10
19秒前
不安忆寒发布了新的文献求助10
20秒前
爱吃秋香鸡的向日葵完成签到,获得积分10
20秒前
Yada完成签到,获得积分10
21秒前
层次感发布了新的文献求助10
21秒前
林狗发布了新的文献求助10
21秒前
科研通AI2S应助大胆的觅松采纳,获得10
22秒前
友好的亦巧完成签到,获得积分10
22秒前
can发布了新的文献求助10
23秒前
香蕉不呐呐完成签到,获得积分10
23秒前
Anna完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851