Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation

人工智能 图像分割 计算机科学 模式识别(心理学) 计算机视觉 分割 领域(数学分析) 鉴别器 一致性(知识库) 编码器 数学 电信 探测器 操作系统 数学分析
作者
Lang Chen,Yun Bian,Jianbin Zeng,Qingquan Meng,Weifang Zhu,Fei Shi,Chengwei Shao,Xinjian Chen,Dehui Xiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4882-4895 被引量:1
标识
DOI:10.1109/tip.2024.3451934
摘要

Unsupervised domain adaptation medical image segmentation is aimed to segment unlabeled target domain images with labeled source domain images. However, different medical imaging modalities lead to large domain shift between their images, in which well-trained models from one imaging modality often fail to segment images from anothor imaging modality. In this paper, to mitigate domain shift between source domain and target domain, a style consistency unsupervised domain adaptation image segmentation method is proposed. First, a local phase-enhanced style fusion method is designed to mitigate domain shift and produce locally enhanced organs of interest. Second, a phase consistency discriminator is constructed to distinguish the phase consistency of domain-invariant features between source domain and target domain, so as to enhance the disentanglement of the domain-invariant and style encoders and removal of domain-specific features from the domain-invariant encoder. Third, a style consistency estimation method is proposed to obtain inconsistency maps from intermediate synthesized target domain images with different styles to measure the difficult regions, mitigate domain shift between synthesized target domain images and real target domain images, and improve the integrity of interested organs. Fourth, style consistency entropy is defined for target domain images to further improve the integrity of the interested organ by the concentration on the inconsistent regions. Comprehensive experiments have been performed with an in-house dataset and a publicly available dataset. The experimental results have demonstrated the superiority of our framework over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助飞宇采纳,获得10
刚刚
火星上初翠完成签到,获得积分10
1秒前
小满完成签到,获得积分10
1秒前
秀丽远航发布了新的文献求助10
1秒前
1秒前
zheng发布了新的文献求助10
1秒前
Enri发布了新的文献求助10
1秒前
1秒前
光电彭于晏完成签到,获得积分10
2秒前
2秒前
sunhealth完成签到,获得积分10
2秒前
hao发布了新的文献求助10
2秒前
4秒前
cun关闭了cun文献求助
4秒前
HEIKU应助ryan采纳,获得10
4秒前
小满发布了新的文献求助30
4秒前
5秒前
5秒前
善良梦竹发布了新的文献求助10
6秒前
皮卡丘2023发布了新的文献求助10
6秒前
iceice发布了新的文献求助10
7秒前
7秒前
852应助SDNUDRUG采纳,获得10
7秒前
江峰发布了新的文献求助10
8秒前
单hx发布了新的文献求助10
8秒前
赵田发布了新的文献求助10
8秒前
布洛芬完成签到,获得积分10
8秒前
9秒前
CipherSage应助sweety采纳,获得10
9秒前
spoon1026完成签到,获得积分10
9秒前
Xx完成签到 ,获得积分10
9秒前
9秒前
李健的小迷弟应助SASFUD采纳,获得10
10秒前
10秒前
哇哈哈哈完成签到,获得积分10
10秒前
hao完成签到,获得积分10
11秒前
单复天完成签到,获得积分10
11秒前
b_wasky发布了新的文献求助10
11秒前
12秒前
古古怪界丶黑大帅完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868