Machine Learning-assisted Melamine-Cu Nanozyme and Cholinesterase Integrated Array for Multi-category Pesticide Intelligent Recognition

三聚氰胺 乙酰胆碱酯酶 杀虫剂 胆碱酯酶 多菌灵 生物传感器 计算机科学 过氧化物酶 对氧磷 化学 人工智能 生物系统 生物化学 有机化学 杀菌剂 生物 植物 药理学 农学
作者
Donghui Song,Yuting Zou,Tian Tian,Yu Ma,Hui Huang,Yongxin Li
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:266: 116747-116747 被引量:6
标识
DOI:10.1016/j.bios.2024.116747
摘要

Expanding target pesticide species and intelligent pesticide recognition were formidable challenges for existing cholinesterase inhibition methods. To improve this status, multi-active Mel-Cu nanozyme with mimetic Cu-N sites was prepared for the first time. It exhibited excellent laccase-like and peroxidase-like activities, and can respond to some pesticides beyond the detected range of enzyme inhibition methods, such as glyphosate, carbendazim, fumonisulfuron, etc., through coordination and hydrogen bonding. Inspired by the signal complementarity of Mel-Cu and cholinesterase, an integrated sensor array based on the Mel-Cu laccase-like activity, Mel-Cu peroxidase-like activity, acetylcholinesterase, and butyrylcholinesterase was creatively constructed. And it could successfully discriminate 12 pesticides at 0.5-50 μg/mL, which was significantly superior to traditional enzyme inhibition methods. Moreover, on the basis of above array, a unified stepwise prediction model was built using classification and regression algorithms in machine learning, which enabled concentration-independent qualitative identification as well as precise quantitative determination of multiple pesticide targets, simultaneously. The sensing accuracy was verified by blind sample analysis, in which the species was correctly identified and the concentration was predicted within 10% error, suggesting great intelligent recognition ability. Further, the proposed method also demonstrated significant immunity to interference and practical application feasibility, providing powerful means for pesticide residue analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助夢loey采纳,获得10
3秒前
5秒前
岁月荣耀发布了新的文献求助10
5秒前
7秒前
123456完成签到,获得积分10
8秒前
今夕何夕发布了新的文献求助10
10秒前
Johnson完成签到 ,获得积分10
10秒前
11秒前
ixueyi完成签到,获得积分10
11秒前
张颖涛完成签到,获得积分10
15秒前
科研通AI5应助wqq采纳,获得10
15秒前
潇潇雨歇发布了新的文献求助10
16秒前
qianqian发布了新的文献求助10
16秒前
竹焚完成签到 ,获得积分10
17秒前
savitar完成签到,获得积分10
18秒前
18秒前
19秒前
昏睡的半鬼完成签到 ,获得积分10
19秒前
搜集达人应助学术通zzz采纳,获得10
23秒前
枫之林发布了新的文献求助10
24秒前
24秒前
alho完成签到 ,获得积分10
25秒前
笨笨十三完成签到 ,获得积分10
25秒前
27秒前
有人应助沈达采纳,获得10
29秒前
斯文败类应助vision采纳,获得10
29秒前
DT发布了新的文献求助10
31秒前
32秒前
34秒前
DoLaso完成签到,获得积分10
34秒前
34秒前
36秒前
平平平平完成签到 ,获得积分10
37秒前
学术通zzz发布了新的文献求助10
41秒前
zxh656691发布了新的文献求助10
43秒前
朴素的SCI缔造者完成签到,获得积分10
44秒前
chonger完成签到,获得积分10
46秒前
烟花应助xzj采纳,获得10
51秒前
52秒前
TK发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304