Exosomes as targeted diagnostic biomarkers: Recent studies and trends

微泡 计算生物学 诊断生物标志物 医学 生物 生物标志物 小RNA 遗传学 基因
作者
Aida Abbasi Marjani,Nader D. Nader,Ayuob Aghanejad
出处
期刊:Life Sciences [Elsevier BV]
卷期号:354: 122985-122985 被引量:2
标识
DOI:10.1016/j.lfs.2024.122985
摘要

Different categories of extracellular vesicles (EVs) are identified based on their origin and formation processes. Among these, exosomes (EXOs) originate from endosomal compartments merging with the plasma membrane, forming small lipid vesicles that transport a range of molecular cargo such as nucleic acids, proteins, and lipids. The composition of EXOs varies depending on their cellular source, encompassing various cell types, including neutrophils, dendritic cells, and even tumor cells. Remarkably, EXOs possess inherent stability, low immunogenicity, and compatibility, making them efficient nano vectors for drug delivery. Imaging techniques like bioluminescence, fluorescence, and nuclear imaging are crucial in non-invasively tracking EXOs within living organisms. This process requires the attachment of radionuclides to the EXO's structure without altering its essential characteristics. Real-time imaging of EXOs is vital for their clinical application, and recent advancements in labeling and tracking methodologies provide insights into biodistribution, functionality, and potential pathways for EXO-mediated drug delivery. This review presents updated progress in the diverse applications of EXOs in targeted imaging across various modalities, where they function as contrast agents facilitating tissue visualization and disease tracking. Consequently, EXOs emerge as promising entities in medical diagnostics and imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史前巨怪完成签到,获得积分10
2秒前
天天开心发布了新的文献求助10
2秒前
3秒前
3秒前
akakns完成签到,获得积分10
3秒前
归尘发布了新的文献求助10
3秒前
慕青应助青荣采纳,获得10
3秒前
aizhujun发布了新的文献求助10
4秒前
4秒前
4秒前
爆米花应助一颗椰子糖耶采纳,获得10
4秒前
5秒前
打打应助江枫渔火采纳,获得10
5秒前
华仔应助司空大有采纳,获得10
5秒前
深情安青应助cyhhhh采纳,获得10
6秒前
Owen应助akakns采纳,获得10
6秒前
6秒前
kezhang完成签到,获得积分10
7秒前
zzx发布了新的文献求助10
7秒前
7秒前
赘婿应助aizhujun采纳,获得10
8秒前
8秒前
许甜甜鸭应助刚子采纳,获得30
9秒前
Meredith发布了新的文献求助10
10秒前
10秒前
在水一方应助阿斯顿马丁采纳,获得10
10秒前
科研通AI5应助简单的听寒采纳,获得10
10秒前
10秒前
Lucas应助明理冬瓜采纳,获得10
12秒前
13秒前
科研通AI5应助aaaaa小柴采纳,获得10
13秒前
牛腩发布了新的文献求助10
13秒前
14秒前
zhong_chuan发布了新的文献求助10
14秒前
factor关注了科研通微信公众号
15秒前
爱科研的的小禾完成签到 ,获得积分10
15秒前
15秒前
林药师发布了新的文献求助10
15秒前
萝卜完成签到,获得积分20
16秒前
努力科研霸王龙完成签到 ,获得积分10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
茶叶生物化学 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828607
求助须知:如何正确求助?哪些是违规求助? 3371080
关于积分的说明 10466123
捐赠科研通 3090923
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817945
科研通“疑难数据库(出版商)”最低求助积分说明 770618