KnoMol: A Knowledge-Enhanced Graph Transformer for Molecular Property Prediction

计算机科学 财产(哲学) 图形 变压器 知识图 人工智能 理论计算机科学 工程类 电气工程 电压 哲学 认识论
作者
Jian Gao,Zheyuan Shen,Lu Yan,Liteng Shen,Binbin Zhou,Donghang Xu,Haibin Dai,Lei Xu,Jinxin Che,Xiaowu Dong
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01092
摘要

Molecular property prediction (MPP) techniques are pivotal in reducing drug development costs by preemptively predicting bioactivity and ADMET properties. Despite the application of numerous deep learning approaches, enhancing the representational capacity of these models remains a significant challenge. This paper presents a novel knowledge-based Transformer framework, KnoMol, designed to improve the understanding of molecular structures. KnoMol integrates expert chemical knowledge into the Transformer, emulating the analytical methods of medicinal chemists. Additionally, the multiperspective attention mechanism provides a more precise way to represent ring systems. In the evaluation experiments, KnoMol achieved state-of-the-art performance on both MoleculeNet and small-scale data sets, surpassing existing models in terms of accuracy and generalization. Further research indicated that the incorporation of knowledge significantly reduces KnoMol's reliance on data volumes, offering a solution to the challenge of data scarcity. Moreover, KnoMol identified several new inhibitors of HER2 in a case study, demonstrating its value in real-world applications. Overall, this research not only provides a powerful tool for MPP but also serves as a successful precedent for embedding knowledge into Transformers, with positive implications for computer-aided drug discovery and the development of MPP algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czt关闭了czt文献求助
刚刚
我不完成签到,获得积分10
1秒前
平凡之路发布了新的文献求助10
1秒前
1秒前
yyhgyg发布了新的文献求助10
1秒前
小二郎应助高文强采纳,获得10
1秒前
1秒前
曦臐完成签到,获得积分10
2秒前
2秒前
2秒前
JerryJi完成签到,获得积分10
2秒前
chang完成签到,获得积分10
3秒前
hp571发布了新的文献求助10
4秒前
4秒前
早早入眠完成签到,获得积分10
4秒前
丘比特应助dara997采纳,获得10
5秒前
FF发布了新的文献求助30
6秒前
JerryJi发布了新的文献求助10
6秒前
陌上之心完成签到,获得积分10
7秒前
Southluuu发布了新的文献求助10
7秒前
TingtingGZ完成签到,获得积分10
8秒前
小蘑菇应助追寻书雁采纳,获得10
8秒前
8秒前
8秒前
8秒前
lbma完成签到,获得积分10
9秒前
科研小能手完成签到,获得积分10
10秒前
10秒前
yyhgyg完成签到,获得积分10
11秒前
dogsday发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助xiao采纳,获得10
13秒前
13秒前
13秒前
喜悦念柏完成签到,获得积分10
15秒前
机灵的幻灵完成签到 ,获得积分10
15秒前
Lucas应助up采纳,获得10
15秒前
科研通AI2S应助天真怀梦采纳,获得10
15秒前
15秒前
DreamLover发布了新的文献求助10
16秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063545
求助须知:如何正确求助?哪些是违规求助? 3601981
关于积分的说明 11439712
捐赠科研通 3325158
什么是DOI,文献DOI怎么找? 1827956
邀请新用户注册赠送积分活动 898434
科研通“疑难数据库(出版商)”最低求助积分说明 819042