材料科学
凝聚态物理
国家(计算机科学)
热力学
物理
计算机科学
算法
作者
Jielin Zha,Yulong Yang,Jiaxun Liu,Xiaomei Lü,Xueli Hu,Shuo Yan,Zijing Wu,Min Zhou,Fengzhen Huang,X.N. Ying,Jinsong Zhu
摘要
Although K0.5Na0.5NbO3 (KNN) possesses large maximum polarization and relatively high breakdown strength, the large remnant polarization constrains their practical applications as energy storage materials. In this work, through multi-element doping, (K0.5−0.5xNa0.5−0.5xBix)(Nb1−xSn0.2xZn0.6xTa0.2x)O3 relaxor ferroelectrics were prepared. As the superparaelectric states (SPE) were adjusted to room temperature, orthorhombic, tetragonal, and cubic phases coexisted, accompanied by the highly dynamic polar nanoregions (PNRs). In particular, a high recoverable energy storage density of 4.5 J/cm3 and an energy storage efficiency of 83% were achieved for the x = 0.125 ceramic, with the variations less than 11% and 4%, respectively, in the wide temperature range of 20–180 °C. These results demonstrate that the multiphase PNRs in the SPE state is an effective strategy for improving the energy storage performance of KNN-based ceramics.
科研通智能强力驱动
Strongly Powered by AbleSci AI