Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data

虚拟筛选 计算机科学 化学数据库 化学空间 学习迁移 机器学习 人工智能 有机分子 多样性(控制论) 训练集 数据库 药物发现 化学 分子 有机化学 生物化学
作者
Chengwei Zhang,Yushuang Zhai,Ziyang Gong,Hongliang Duan,Yuan-Bin She,Yun-Fang Yang,An Su
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:16 (1): 89-89 被引量:12
标识
DOI:10.1186/s13321-024-00886-1
摘要

Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO-SMILES dataset achieved R2 scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO-SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.Scientific contributionThis study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘yi发布了新的文献求助10
刚刚
2秒前
儒雅日记本关注了科研通微信公众号
2秒前
科研谢啦发布了新的文献求助30
3秒前
3秒前
小马甲应助想吃脆脆采纳,获得10
3秒前
6秒前
梅天豪发布了新的文献求助30
7秒前
刘勤杰发布了新的文献求助10
7秒前
xixi完成签到,获得积分20
8秒前
8秒前
10秒前
小王想要进20完成签到,获得积分10
10秒前
10秒前
12秒前
李健应助蔚然无尽蓝采纳,获得10
12秒前
16秒前
99完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
heart完成签到,获得积分10
17秒前
科研谢啦完成签到,获得积分10
18秒前
18秒前
微笑向卉发布了新的文献求助20
20秒前
20秒前
21秒前
22秒前
吴斯应助伶俐的成危采纳,获得10
24秒前
bkagyin应助仁爱的尔蓝采纳,获得10
25秒前
25秒前
27秒前
HOU发布了新的文献求助10
28秒前
28秒前
小黄快跑完成签到 ,获得积分10
29秒前
shhoing应助萨尔莫斯采纳,获得10
29秒前
在水一方应助江北月采纳,获得10
30秒前
31秒前
GAW发布了新的文献求助10
33秒前
33秒前
不配.应助半生半熟采纳,获得200
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532595
求助须知:如何正确求助?哪些是违规求助? 4621358
关于积分的说明 14577575
捐赠科研通 4561156
什么是DOI,文献DOI怎么找? 2499216
邀请新用户注册赠送积分活动 1479159
关于科研通互助平台的介绍 1450389