碳量子点
纳米复合材料
光催化
制作
量子点
可见光谱
碳纤维
材料科学
纳米技术
光电子学
化学工程
化学
复合材料
医学
复合数
催化作用
有机化学
工程类
病理
替代医学
作者
Md. Dipu Malitha,Md. Tamzid Hossain Molla,MA Bashar,Dipesh Chandra,Md. Shameem Ahsan
标识
DOI:10.1038/s41598-024-66046-5
摘要
In awareness of industrial dye wastewater, carbon quantum dots (CQDs) and cobalt zinc ferrite (CZF) nanocomposites were synthesised for the making of carbon quantum dots coated cobalt zinc ferrite (CZF@CQDs) nanophotocatalyst using oxidative polymerization reaction. The results of TEM, zeta potential value, and FTIR confirm highly dispersed 1-4 nm particles with the - 45.7 mV carboxylic functionalized surface of CQDs. The results of the synthesised CZF@CQDs photocatalyst showed an average particle size of ~ 15 nm according to TEM, SEM, and XRD. The photocatalyst showed a 1.20 eV band gap, which followed the perfect visible light irradiation. TGA and DTA revealed the good thermal stability of the nanophotocatalyst. VSM was carried out, and the saturation magnetisations for CZF and CZF@CQDs were 42.44 and 36.14 emu/g, respectively. A multipoint study determined the BET-specific surface area of the CZF@CQDs photocatalyst to be 149.87 m2/g. Under visible light irradiation, the final CZF@CQDs nanophotocatalyst demonstrated remarkable efficiency (~ 95% within 25 min) in the photocatalytic destruction of Reactive Blue 222 (RB 222) and Reactive Yellow 145 (RY 145) dyes, as well as mechanical stability and recyclability. Even after the recycling of the degradation study, the nanophotocatalyst efficiency (~ 82%, 7th cycles) was predominantly maintained. The effects of several parameters were also investigated, including initial dye concentration, nanophotocatalyst concentration, CQD content, initial pH of the dye solution, and reaction kinetics. Degradation study data follow the first-order reaction rate (R2 > 0.93). Finally, a simple and low-cost synthesis approach, rapid degradation, and outstanding stability of the CQD-coated CZF nanophotocatalyst should make it a potential photocatalyst for dye wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI