已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Navigating elementary EFL speaking skills with generative AI chatbots: Exploring individual and paired interactions

生成语法 心理学 数学教育 计算机科学 人工智能
作者
Tzu‐Yu Tai,Howard Hao-Jan Chen
出处
期刊:Computers & education [Elsevier BV]
卷期号:220: 105112-105112 被引量:27
标识
DOI:10.1016/j.compedu.2024.105112
摘要

Generative artificial intelligence (GAI) and automatic speech recognition (ASR) have ushered in promising tools for foreign language learning, notably GAI chatbots. This study investigated the impact of GAI chatbots on elementary school English as a foreign language (EFL) learners' speaking skills, focusing on two interaction configurations—individual and paired. Eighty-five elementary school EFL learners participated in a three-week summer program, engaging in daily 45-minute interactions with CoolE Bot. The participants were randomly assigned to three groups: (1) individual interaction with CoolE Bot (I-Bot group), (2) paired interaction with CoolE Bot (P-Bot group), and (3) interaction with teachers and peers in a conventional English classroom (No-Bot group). In each class, participants in the Bot group received worksheets with a topic, prompts, and vocabulary to guide their interactions with CoolE Bot, while those in the No-Bot group also received worksheets for comparable activities. Quantitative (English-speaking tests) and qualitative data (semi-structured interviews) were collected and analyzed. Results revealed that the I-Bot and P-Bot groups' post-test speaking skills were significantly higher than those of the No-Bot group. CoolE Bot significantly improved the speaking skills of EFL learners. Both individual and paired interactions with CoolE Bot demonstrated positive effects, with no significant differences between groups. Interviews highlight CoolE Bot's adeptness in coherent interaction, charismatic conversational style with a human-like voice, diverse topic discussions tailored to learners' interests, and supportive functions. The participants found GAI chatbot-assisted EFL speaking enjoyable, motivating, and engaging appreciating its cartoonish, human-like characters, conversational style, and voice. Additionally, CoolE Bot fostered rapport and a supportive environment enhancing learners' confidence and reducing anxiety regarding EFL speaking. Individual interactions encourage personalized engagement and self-directed learning, whereas paired interactions involve social dynamics, shared learning experiences, and mutual resolution of language challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
puppy发布了新的文献求助30
1秒前
雨相所至完成签到,获得积分10
3秒前
科研通AI2S应助犹豫的铅笔采纳,获得10
4秒前
bkagyin应助安静海菡采纳,获得10
7秒前
大个应助guolong采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
17秒前
17秒前
18秒前
19秒前
21秒前
令狐凝阳发布了新的文献求助10
22秒前
安静海菡发布了新的文献求助10
23秒前
zzjjyy发布了新的文献求助10
24秒前
数学情缘发布了新的文献求助10
25秒前
29秒前
zzjjyy完成签到,获得积分10
31秒前
33秒前
雪花精灵发布了新的文献求助10
34秒前
guolong发布了新的文献求助10
37秒前
安静海菡完成签到,获得积分10
38秒前
烟花应助雪花精灵采纳,获得10
39秒前
榴莲姑娘完成签到 ,获得积分10
41秒前
平常的柠檬完成签到,获得积分10
41秒前
45秒前
46秒前
46秒前
zhao完成签到 ,获得积分10
48秒前
数学情缘发布了新的文献求助10
49秒前
南瓜头完成签到 ,获得积分10
49秒前
babren发布了新的文献求助10
50秒前
立夏完成签到,获得积分10
54秒前
天天天晴完成签到,获得积分10
55秒前
1分钟前
远山黛关注了科研通微信公众号
1分钟前
SCI的李完成签到 ,获得积分10
1分钟前
Menand完成签到,获得积分10
1分钟前
guolong关注了科研通微信公众号
1分钟前
1分钟前
丸子完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959981
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803056