A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation

深度学习 人工智能 计算机科学 分割 病变 模式识别(心理学) 机器学习 医学 病理
作者
Huiyan Jiang,Zhaoshuo Diao,Tianyu Shi,Yang Zhou,Feiyu Wang,Wenrui Hu,Xiaolin Zhu,Shijie Luo,Guoyu Tong,Yudong Yao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106726-106726 被引量:109
标识
DOI:10.1016/j.compbiomed.2023.106726
摘要

Deep learning-based methods have become the dominant methodology in medical image processing with the advancement of deep learning in natural image classification, detection, and segmentation. Deep learning-based approaches have proven to be quite effective in single lesion recognition and segmentation. Multiple-lesion recognition is more difficult than single-lesion recognition due to the little variation between lesions or the too wide range of lesions involved. Several studies have recently explored deep learning-based algorithms to solve the multiple-lesion recognition challenge. This paper includes an in-depth overview and analysis of deep learning-based methods for multiple-lesion recognition developed in recent years, including multiple-lesion recognition in diverse body areas and recognition of whole-body multiple diseases. We discuss the challenges that still persist in the multiple-lesion recognition tasks by critically assessing these efforts. Finally, we outline existing problems and potential future research areas, with the hope that this review will help researchers in developing future approaches that will drive additional advances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
drizzling完成签到,获得积分10
1秒前
斯文尔阳完成签到,获得积分10
1秒前
小鹿发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助changjing5638采纳,获得20
4秒前
5秒前
汉堡包应助雷浩采纳,获得10
5秒前
体贴坤坤完成签到 ,获得积分10
7秒前
认真的adai发布了新的文献求助10
8秒前
8秒前
10秒前
12秒前
13秒前
猫熊完成签到,获得积分10
14秒前
任性柜子完成签到 ,获得积分10
14秒前
15秒前
搞怪大炮完成签到 ,获得积分10
16秒前
WangSiwei完成签到,获得积分10
17秒前
小洛发布了新的文献求助10
17秒前
17秒前
18秒前
华仔应助xmf采纳,获得10
18秒前
18秒前
雷浩发布了新的文献求助10
18秒前
19秒前
lihanyan666完成签到,获得积分10
19秒前
20秒前
俭朴的寇完成签到,获得积分10
22秒前
ddz发布了新的文献求助20
22秒前
22秒前
吕子尚发布了新的文献求助30
22秒前
小洛完成签到,获得积分10
23秒前
23秒前
杜嘟嘟完成签到,获得积分10
24秒前
可可发布了新的文献求助10
25秒前
25秒前
Ldq发布了新的文献求助10
25秒前
科研通AI5应助萌神_HUGO采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960