A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation

深度学习 人工智能 计算机科学 分割 病变 模式识别(心理学) 机器学习 医学 病理
作者
Huiyan Jiang,Zhaoshuo Diao,Tianyu Shi,Yang Zhou,Feiyu Wang,Wenrui Hu,Xiaolin Zhu,Shijie Luo,Guoyu Tong,Yudong Yao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106726-106726 被引量:196
标识
DOI:10.1016/j.compbiomed.2023.106726
摘要

Deep learning-based methods have become the dominant methodology in medical image processing with the advancement of deep learning in natural image classification, detection, and segmentation. Deep learning-based approaches have proven to be quite effective in single lesion recognition and segmentation. Multiple-lesion recognition is more difficult than single-lesion recognition due to the little variation between lesions or the too wide range of lesions involved. Several studies have recently explored deep learning-based algorithms to solve the multiple-lesion recognition challenge. This paper includes an in-depth overview and analysis of deep learning-based methods for multiple-lesion recognition developed in recent years, including multiple-lesion recognition in diverse body areas and recognition of whole-body multiple diseases. We discuss the challenges that still persist in the multiple-lesion recognition tasks by critically assessing these efforts. Finally, we outline existing problems and potential future research areas, with the hope that this review will help researchers in developing future approaches that will drive additional advances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西瓜和傻瓜完成签到,获得积分10
刚刚
MONSTER关注了科研通微信公众号
刚刚
ff发布了新的文献求助10
1秒前
风中雅青完成签到 ,获得积分10
1秒前
嘴角微微仰起笑应助susan采纳,获得10
1秒前
Hao发布了新的文献求助10
1秒前
1秒前
加油完成签到,获得积分10
2秒前
2秒前
luyu发布了新的文献求助10
2秒前
领导范儿应助小美美采纳,获得10
2秒前
cfplrbs发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
xxl1031237415完成签到,获得积分20
3秒前
知安发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
sxx发布了新的文献求助10
4秒前
4秒前
oylonq完成签到,获得积分10
5秒前
汉堡包应助安夕阳采纳,获得10
5秒前
叶言发布了新的文献求助20
6秒前
哈基米完成签到,获得积分10
6秒前
隐形曼青应助周先泽采纳,获得10
6秒前
Akim应助一天采纳,获得10
7秒前
慕青应助Pppo采纳,获得10
7秒前
东风给东风的求助进行了留言
7秒前
可爱的函函应助摸鱼大王采纳,获得10
7秒前
7秒前
An家的baby发布了新的文献求助10
7秒前
科研通AI6应助lvjiahui采纳,获得10
8秒前
tianbro发布了新的文献求助10
8秒前
xxl1031237415发布了新的文献求助10
8秒前
zzyue完成签到,获得积分10
8秒前
研友_8Raw2Z发布了新的文献求助20
8秒前
mm发布了新的文献求助10
9秒前
ding应助着急的班采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404576
求助须知:如何正确求助?哪些是违规求助? 4522954
关于积分的说明 14091850
捐赠科研通 4436730
什么是DOI,文献DOI怎么找? 2435212
邀请新用户注册赠送积分活动 1427559
关于科研通互助平台的介绍 1405929