Portable beef-freshness detection platform based on colorimetric sensor array technology and bionic algorithms for total volatile basic nitrogen (TVB-N) determination

蚁群优化算法 粒子群优化 优化算法 计算机科学 算法 数学 数学优化
作者
Weidong Xu,Yingchao He,Jiaheng Li,Jianwei Zhou,Enbo Xu,Wenjun Wang,Donghong Liu
出处
期刊:Food Control [Elsevier]
卷期号:150: 109741-109741 被引量:40
标识
DOI:10.1016/j.foodcont.2023.109741
摘要

Colorimetric sensor array (CSA) and bionic algorithms were integrated to form a facile platform for total volatile basic nitrogen (TVB-N) determination. First, a CSA containing twelve color-sensitive materials was prepared to obtain scent information of beef and generate scent fingerprints for visualization. Second, four bionic optimization algorithms, ant colony optimization (ACO), particle swarm optimization (PSO), simulated annealing (SA), and whale optimization algorithm (WOA), were used to extract the characteristic fingerprint variables from the CSA. Finally, the back-propagation neural network (BPNN) model combined with characteristic color components was constructed to determine the TVB-N during beef storage, with improved precision, robustness, and generalization performance. The results demonstrated that WOA had the best optimization performance, followed by PSO, ACO, and SA. The WOA-BPNN optimized only two materials to detect TVB-N during beef storage. The BPNN constructed by three variables from the two selected materials had the best determination results, with the RMSEC, Rc, RMSEP, Rp, and RPD were 2.502 ± 0.083 mg/100 g, 0.966 ± 0.002, 2.903 ± 0.143 mg/100 g, 0.952 ± 0.006, and 3.430 ± 0.185, respectively. Therefore, the WOA-BPNN model could realize high-precision quantitative determination of TVB-N during beef storage and save resources for CSA preparation. The combination of CSA and the excellent bionic algorithm is expected to become a facile on-site sensing platform for food freshness monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili发布了新的文献求助10
刚刚
满意曼荷完成签到,获得积分10
1秒前
橙子发布了新的文献求助10
2秒前
Lyy发布了新的文献求助10
2秒前
SciGPT应助虞徵采纳,获得10
3秒前
姚世娇完成签到 ,获得积分10
3秒前
3秒前
556发布了新的文献求助50
4秒前
5秒前
英俊的铭应助cyn采纳,获得10
6秒前
希望天下0贩的0应助阳光采纳,获得10
6秒前
满意曼荷发布了新的文献求助30
8秒前
直率的笑阳完成签到,获得积分10
9秒前
杨春末完成签到,获得积分10
12秒前
12秒前
大个应助冷艳的白竹采纳,获得10
13秒前
13秒前
欢喜的蛋挞完成签到,获得积分10
14秒前
共享精神应助大酸梅子采纳,获得10
14秒前
打打应助weiling采纳,获得10
14秒前
英俊的铭应助一切都好采纳,获得10
14秒前
jeanian完成签到,获得积分10
14秒前
15秒前
16秒前
Ting发布了新的文献求助10
18秒前
Yikepp完成签到,获得积分10
18秒前
宗忻发布了新的文献求助10
18秒前
18秒前
20秒前
爆米花应助陌陌采纳,获得10
20秒前
优雅草丛发布了新的文献求助30
21秒前
量子星尘发布了新的文献求助10
21秒前
成就的笑南完成签到 ,获得积分10
21秒前
可爱的函函应助76542cu采纳,获得10
21秒前
Lyy完成签到,获得积分10
22秒前
David完成签到,获得积分10
22秒前
科研通AI6应助KD采纳,获得10
23秒前
24秒前
宗忻完成签到,获得积分10
26秒前
玖玖完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486450
求助须知:如何正确求助?哪些是违规求助? 4586000
关于积分的说明 14407437
捐赠科研通 4516467
什么是DOI,文献DOI怎么找? 2474801
邀请新用户注册赠送积分活动 1460741
关于科研通互助平台的介绍 1433828