亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Video Anomaly Retrieval From Video Anomaly Detection: New Benchmarks and Model

计算机科学 光学(聚焦) 异常检测 杠杆(统计) 异常(物理) 背景(考古学) 情报检索 任务(项目管理) 钥匙(锁) 事件(粒子物理) 人工智能 数据挖掘 物理 凝聚态物理 古生物学 计算机安全 管理 量子力学 光学 经济 生物
作者
Peng Wu,Jing Liu,Xiangteng He,Yuxin Peng,Peng Wang,Yanning Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2213-2225 被引量:13
标识
DOI:10.1109/tip.2024.3374070
摘要

Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., "vandalism", is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks and design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method. Captions are publicly released at https://github.com/Roc-Ng/VAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
12秒前
恋雅颖月完成签到 ,获得积分10
13秒前
jianguo完成签到,获得积分10
17秒前
起个名不麻烦完成签到 ,获得积分10
17秒前
舒心的青亦完成签到 ,获得积分10
27秒前
28秒前
研友_nER2JZ发布了新的文献求助40
28秒前
Veronica完成签到,获得积分10
29秒前
倷倷完成签到 ,获得积分10
37秒前
美罗培南完成签到,获得积分10
40秒前
科研通AI5应助谢芝朗采纳,获得10
41秒前
合一海盗完成签到,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
44秒前
yuyu完成签到,获得积分10
44秒前
44秒前
46秒前
我爱康康文献完成签到 ,获得积分10
48秒前
51秒前
大模型应助yaoyh_gc采纳,获得10
55秒前
111发布了新的文献求助30
57秒前
suxili完成签到 ,获得积分10
58秒前
顾矜应助ltt采纳,获得30
1分钟前
英俊的铭应助辛勤夜柳采纳,获得20
1分钟前
实验大牛完成签到,获得积分10
1分钟前
机灵柚子发布了新的文献求助20
1分钟前
研友_nER2JZ完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sunnn完成签到 ,获得积分10
1分钟前
1分钟前
飘逸的天菱完成签到 ,获得积分10
1分钟前
yaoyh_gc发布了新的文献求助10
1分钟前
最最最发布了新的文献求助10
1分钟前
1分钟前
辛勤夜柳发布了新的文献求助20
1分钟前
SYLH应助机灵柚子采纳,获得10
1分钟前
飘逸的天菱关注了科研通微信公众号
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346371
关于积分的说明 10329161
捐赠科研通 3062821
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807442
科研通“疑难数据库(出版商)”最低求助积分说明 763702