Localization in Reconfigurable Intelligent Surface Aided mmWave Systems: A Multiple Measurement Vector Based Channel Estimation Method

频道(广播) 电子工程 计算机科学 工程类 电信
作者
Kunlun Li,Jiguang He,Mohammed El‐Hajjar,Lie‐Liang Yang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tvt.2024.3393022
摘要

The sparsity of millimeter wave (mmWave) channels in the angular and temporal domains is beneficial to channel estimation, while the associated channel parameters can be utilized for localization.However, line-of-sight (LoS) blockage poses a significant challenge on the localization in mmWave systems, potentially leading to substantial positioning errors.A promising solution is to employ reconfigurable intelligent surface (RIS) to generate the virtual line-of-sight (VLoS) paths to aid localization.Consequently, wireless localization in the RISassisted mmWave systems has become the essential research issue.In this paper, a multiple measurement vector (MMV) model is constructed and a two-stage channel estimation based localization scheme is proposed.During the first stage, by exploiting the beamspace sparsity and employing a random RIS phase shift matrix, the channel parameters are estimated, based on which the precoder at base station and combiner at user equipment (UE) are designed.Then, in the second stage, based on the designed precoding and combining matrices, the optimal phase shift matrix for RIS is designed using the proposed modified temporally correlated multiple sparse Bayesian learning (TMSBL) algorithm.Afterwards, the channel parameters, such as angle of reflection, time-of-arrival, etc., embedding location information are estimated for finally deriving the location of UE.We demonstrate the achievable performance of the proposed algorithm and compare it with the state-of-the-art algorithms.Our studies show that the proposed localization scheme is capable of achieving centimeter level localization accuracy, when LoS path is blocked.Furthermore, the proposed algorithm has a low computational complexity and outperforms the legacy algorithms in different perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轩轩完成签到,获得积分10
1秒前
研友_VZG7GZ应助加布采纳,获得10
1秒前
着急的盼山完成签到,获得积分10
1秒前
秦蓁发布了新的文献求助10
2秒前
黑米粥发布了新的文献求助10
3秒前
Wang完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI5应助abys采纳,获得10
5秒前
望乐思完成签到,获得积分10
5秒前
5秒前
科研通AI5应助张龙雨采纳,获得10
5秒前
6秒前
帅气犀牛发布了新的文献求助10
6秒前
yoyo发布了新的文献求助10
6秒前
tanglu完成签到,获得积分10
8秒前
赘婿应助xnbb采纳,获得10
9秒前
爱money的傲之完成签到,获得积分10
10秒前
张美超发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
youchgg完成签到,获得积分10
12秒前
13秒前
14秒前
充电宝应助丘奇采纳,获得10
14秒前
14秒前
14秒前
毛毛发布了新的文献求助10
15秒前
wxiao发布了新的文献求助10
16秒前
小洛发布了新的文献求助10
16秒前
xinxinbaby发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
abys发布了新的文献求助10
19秒前
libiqing77完成签到,获得积分10
20秒前
Owen应助jia采纳,获得10
21秒前
Oct完成签到,获得积分10
21秒前
JamesPei应助xinxinbaby采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867412
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664834
捐赠科研通 3133968
什么是DOI,文献DOI怎么找? 1728716
邀请新用户注册赠送积分活动 833058
科研通“疑难数据库(出版商)”最低求助积分说明 780550