UAV Target Detection and Path Planning Based on Improved YOLOv4 Networks with Improved Artificial Potential Field Methods

计算机科学 运动规划 领域(数学) 势场 人工智能 路径(计算) 计算机网络 机器人 数学 地质学 地球物理学 纯数学
作者
Z Y Liu
标识
DOI:10.1109/ispcem60569.2023.00006
摘要

In recent years, with the rise of the application of deep learning tasks in the end of multi-rotor UAVs, it is a very scientifically meaningful and practical research to combine artificial intelligence technology with pattern recognition technology to realize automatic target detection and autonomous obstacle avoidance in UAVs. The traditional manual inspection method has the problems of low efficiency, high labor and material consumption and low safety, so the country is vigorously developing the drone industry at this stage. UAV inspection tasks are becoming more and more important, and it has become a trend for UAVs to shift to the direction of unmanned operations. With the increase of UAV density in large cities, it is meaningful to control and manage the trajectory of UAVs and provide intelligent trajectory optimization and anti-collision system. In order to achieve safe and fast autonomous flight, it is necessary to intelligently optimize the flight trajectory of UAV to ensure the best response time and increase the duration of continuous flight. At the same time, due to the low-slow-small characteristics of UAVs and the complexity of cities, UAVs are often faced with the interference of airborne obstacles, such as utility poles or flying birds, and need to perform real-time environment sensing and change their trajectories in time to avoid these obstacles. We propose an ED-YOLO network model for target detection of UAV obstacles. The target detection algorithm is based on YOLOv4, and firstly, a channel attention mechanism is added to the backbone network to improve the detection accuracy without increasing the computation. Compared with YOLOv4, its average accuracy mean of obstacle target detection is only reduced by 1.4%, while the model volume is reduced by 94.9%, the floating-point operation volume is reduced by 82.1%, and the prediction speed is improved by 2.3 times. We also studied UAV obstacle avoidance path planning. Firstly, we propose the UAV obstacle avoidance strategy, secondly, we introduce the traditional artificial potential field method and analyze the defects of this algorithm, and then we propose a solution and conduct simulation and comparison tests in MATLAB software to illustrate its effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助风清扬采纳,获得10
刚刚
ax1999发布了新的文献求助10
刚刚
二丫完成签到,获得积分10
刚刚
1233发布了新的文献求助10
刚刚
1秒前
gs完成签到,获得积分20
1秒前
搞怪的幻枫完成签到 ,获得积分10
1秒前
陈情完成签到 ,获得积分10
1秒前
1秒前
lhy完成签到 ,获得积分10
1秒前
XC完成签到,获得积分10
2秒前
黄sir发布了新的文献求助10
2秒前
WHITE完成签到,获得积分10
2秒前
2秒前
苹果小蜜蜂完成签到,获得积分10
2秒前
souther完成签到,获得积分0
3秒前
3秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
3秒前
半夜炒茄子完成签到,获得积分10
3秒前
洛希极限完成签到,获得积分10
4秒前
非鱼完成签到,获得积分10
4秒前
anan完成签到,获得积分0
4秒前
4秒前
chall完成签到,获得积分20
4秒前
4秒前
4秒前
bezoar完成签到 ,获得积分10
5秒前
阔达代芹发布了新的文献求助10
5秒前
5秒前
6秒前
yoo完成签到,获得积分10
7秒前
2953685951发布了新的文献求助10
7秒前
wwwww发布了新的文献求助10
8秒前
白钥衡发布了新的文献求助10
8秒前
紫菜完成签到,获得积分10
8秒前
苗条怀亦完成签到,获得积分10
9秒前
9秒前
动人的姝发布了新的文献求助10
9秒前
小熊猫发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257216
求助须知:如何正确求助?哪些是违规求助? 4419343
关于积分的说明 13755803
捐赠科研通 4292563
什么是DOI,文献DOI怎么找? 2355554
邀请新用户注册赠送积分活动 1352004
关于科研通互助平台的介绍 1312755