Revisiting the quantification of power plant CO2 emissions in the United States and China from satellite: A comparative study using three top-down approaches

遥感 卫星 中国 环境科学 气象学 气候学 地理 地质学 天文 物理 考古
作者
Cheng He,Xiao Lu,Yuzhong Zhang,Zhu Liu,Fei Jiang,Youwen Sun,Meng Gao,Yiming Liu,Haipeng Lin,Jiani Yang,Xiaojuan Lin,Yurun Wang,Chengyuan Hu,Shaojia Fan
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114192-114192 被引量:13
标识
DOI:10.1016/j.rse.2024.114192
摘要

Top-down constraints of CO2 emissions from coal-fired power plants are critical to improving the accuracy of CO2 emission inventory and designing carbon reduction strategies. Different top-down models based on satellite observation have been proposed in previous studies, but discrepancies between these models and the underlying drivers are rarely explored, limiting the confidence of their application for monitoring point-source CO2 emissions from satellite. Here, we apply three top-down models to estimate CO2 emissions from individual coal-fired power plants in the United States (US) and China in 2014–2021 from Orbiting Carbon Observatory 2 (OCO-2) satellite observations. The first one applies the Gaussian plume model to optimize emissions by fitting modeled CO2 enhancement to the observation. The second and third methods apply the same inversion framework using the maximum likelihood estimation, but with WRF-Chem and WRF-FLEXPART as forward models, respectively. We evaluate consistency between the three methods in estimating emissions of 10 power plants in the US, using daily reported values from the US Environmental Protection Agency (EPA) as a benchmark, and then apply the three methods to quantify emissions of 13 power plants in China. Results show that the WRF-Chem and WRF-FLEXPART based inversion results are consistent with the EPA reported emission rates, with correlation coefficients (r) of 0.76 and 0.85 and mean biases (MB) of 4.06 and 3.97 ktCO2/d relative to EPA reports at all 10 power plants, respectively. The Gaussian plume model driven by wind fields from WRF-Chem model without the wind rotation shows comparable ability in reproducing the EPA reported emission rates at 7 power plants (r = 0.82, MB = 6.17), but is not applicable for the other three cases. We find that application of the high-resolution three-dimensional wind fields can better capture the shape of observed plumes, especially under complex wind conditions, compared to the Gaussian plume model which relies on wind field at a single point, and thus the Gaussian plume model has difficulty to optimize emissions under inhomogeneous wind fields or when observations are far away from the power plant. In general, using the WRF-FLEXPART model as the forward model in the inverse analysis shows advanced capability to simulate narrow-shape plumes in the absence of numerical diffusion which is inherent in Eulerian model such as WRF-Chem. Emissions estimated by the three top-town methods show a moderate consistency at 13 coal-fired power plant cases in China, with 8 of 13 cases showing differences of <30% between at least two methods. However, large differences emerge when wind fields are inhomogeneous and number of available observations is limited. Using different meteorological wind fields and OCO-2 data versions can also bring substantial differences to the posterior emissions for all three approaches. We find that the posterior CO2 emissions, though only reflecting instantaneous emission rates at satellite overpass time, are not proportional to the reported capacities of these power plants, indicating that attributing CO2 emissions simply based on the capacity of power plants in some bottom-up approaches may have significant discrepancies. Our study exposes the capability and limitation of different top-down approaches in quantifying point-source CO2 emissions, advancing their application for better serving increasing constellations of point-source imagers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩明轩发布了新的文献求助10
1秒前
吐司大王完成签到,获得积分10
1秒前
哈哈哈发布了新的文献求助10
1秒前
wongcong发布了新的文献求助10
1秒前
逆袭者发布了新的文献求助10
3秒前
所所应助wg采纳,获得10
4秒前
4秒前
4秒前
冬1发布了新的文献求助10
4秒前
5秒前
blue发布了新的文献求助10
5秒前
Criminology34应助无辜的夏山采纳,获得10
5秒前
6秒前
斯文败类应助韩明轩采纳,获得10
6秒前
科目三应助无奈的如彤采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
麻薯完成签到,获得积分10
7秒前
科研通AI6.1应助shuo0976采纳,获得10
8秒前
Rika_Ran完成签到,获得积分10
8秒前
漠然完成签到,获得积分10
8秒前
明亮谷波发布了新的文献求助10
9秒前
10秒前
科研通AI6.1应助迷人奇迹采纳,获得10
10秒前
熬大夜发布了新的文献求助20
10秒前
刻苦慕晴完成签到 ,获得积分10
10秒前
搜集达人应助哈哈哈采纳,获得10
10秒前
崔京成发布了新的文献求助10
10秒前
英俊的铭应助棠棠采纳,获得10
11秒前
12秒前
郭佳怡发布了新的文献求助30
12秒前
白子双完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
斯文败类应助友好的士萧采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
蒋复天发布了新的文献求助10
17秒前
17秒前
17秒前
华仔应助高高天抒采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797