The Effectiveness of Sensor Visualizations and Graphic Augmentations for Detecting Vertical Obstacles

计算机科学 计算机图形学(图像) 计算机视觉
作者
Paul Flanigen,Michael L. Wilson,Nadine Sarter,Ella Atkins
出处
期刊:Journal of The American Helicopter Society [Vertical Flight Society]
卷期号:69 (3): 1-13
标识
DOI:10.4050/jahs.69.032011
摘要

Slow or failed detection of low‐salience vertical obstacles and associated wires is one of today’s leading causes of fatal helicopter accidents. The risk of collisions with such obstacles is likely to increase as advanced aerial mobility and broadening drone activity promises to increase the density of air traffic at low altitudes, while growing demand for electricity and communication will expand the number of vertical structures. The current see‐and‐avoid detection paradigm relies on pilots to spend much of their visual attention looking outside for obstacles. This method is inadequate in low‐visibility conditions, cluttered environments, and given the need for pilots to engage in multiple competing visual tasks. With the expected growing number of hazards and an increased traffic volume, the current approach to collision avoidance will become even less tenable. A human‐in‐the‐loop helicopter simulator study was conducted to assess the effectiveness of sensor visualizations (image intensification or thermal imaging) and graphic augmentations (a bounding box around a tower and a circle surrounding the base of the tower) for supporting fast and reliable detection of vertical structures. Graphic augmentations resulted in faster tower detection time when ambient visibility and illumination were reduced close to the limit for visual flight. Bounding boxes around towers were detected first in all conditions but tended to mask the obstacle they were meant to highlight. Sensor visualization affected tower detection time only at night, where night vision goggles were more effective than the infrared thermal sensor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猴子完成签到,获得积分10
刚刚
4秒前
7秒前
洲洲完成签到 ,获得积分10
7秒前
阔达的水壶完成签到 ,获得积分10
8秒前
米奇发布了新的文献求助10
8秒前
李爱国应助llg采纳,获得10
9秒前
平淡的天宇完成签到,获得积分10
9秒前
moon发布了新的文献求助10
12秒前
12秒前
14秒前
pluto应助星辰采纳,获得20
17秒前
谢富杰发布了新的文献求助10
18秒前
cgs完成签到 ,获得积分10
20秒前
Lojong完成签到,获得积分10
20秒前
21秒前
韩hqf发布了新的文献求助10
22秒前
23秒前
Lucas应助研友_89Nm7L采纳,获得50
25秒前
搜集达人应助潇洒的平松采纳,获得10
25秒前
超爱茶多酚完成签到,获得积分10
25秒前
ChiMing发布了新的文献求助20
28秒前
科研通AI5应助tdtk采纳,获得10
32秒前
烟花应助baolongzhan采纳,获得30
33秒前
自信安荷完成签到,获得积分10
35秒前
ChiMing完成签到,获得积分20
38秒前
乐乐应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
上官若男应助科研通管家采纳,获得10
39秒前
orixero应助科研通管家采纳,获得10
39秒前
彭于晏应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
机灵柚子应助科研通管家采纳,获得10
40秒前
英俊的铭应助科研通管家采纳,获得10
40秒前
大个应助科研通管家采纳,获得10
40秒前
搜集达人应助科研通管家采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290