Crack propagation simulation and overload fatigue life prediction via enhanced physics-informed neural networks

人工神经网络 结构工程 断裂力学 巴黎法 搭配(遥感) 节点(物理) 流离失所(心理学) 裂缝闭合 应力集中 路径(计算) 计算机科学 材料科学 工程类 人工智能 心理学 机器学习 心理治疗师 程序设计语言
作者
Zhiying Chen,Yanwei Dai,Yinghua Liu
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:186: 108382-108382 被引量:30
标识
DOI:10.1016/j.ijfatigue.2024.108382
摘要

The fatigue crack growth simulation and life prediction of structures are implemented in this paper based on the physics-informed neural networks (PINNs). Firstly, the enhanced PINNs are proposed by introducing the crack tip asymptotic displacement fields, so that the crack tip stress intensity factors can be calculated accurately even when the number of collocation points is small and the distribution grid is regular. The enhanced PINNs essentially transform the solution of elastic body containing crack into the optimization of minimizing the constructed loss functions, and can invert the fracture parameters. Then, an automatic crack propagation simulation method is developed based on the enhanced PINNs. The network architecture and the overall node distribution can be unchanged during the crack propagation process, and only new crack surfaces need to be processed and corresponding loss functions need to be modified. Because the nodal refinement around crack-tip is not required, this simulation method is convenient and can accurately predict the mixed-mode crack propagation path. Finally, the fatigue crack growth life algorithm considering overload is developed, where the effect of each overload can be captured by the cycle-by-cycle method. Based on this algorithm, the retardation behavior can be characterized and the fatigue life of structure under the load spectrum with periodic overloads can be accurately predicted. The sufficient examples are given to verify the feasibility and accuracy of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助YT采纳,获得10
刚刚
卡布达完成签到,获得积分10
1秒前
1秒前
修仙中应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
修仙中应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助263采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
小小油应助科研通管家采纳,获得100
2秒前
CipherSage应助雨泽理采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
积极向上发布了新的文献求助10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
远志发布了新的文献求助30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
修仙中应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
科研通AI6应助LL采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
时生完成签到,获得积分20
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626363
求助须知:如何正确求助?哪些是违规求助? 4712202
关于积分的说明 14958524
捐赠科研通 4781493
什么是DOI,文献DOI怎么找? 2554266
邀请新用户注册赠送积分活动 1515993
关于科研通互助平台的介绍 1476327