Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection

计算机科学 残余物 预处理器 人工智能 特征(语言学) 遥感 薄雾 模式识别(心理学) 频道(广播) 比例(比率) 计算机视觉 算法 地理 电信 哲学 气象学 地图学 语言学
作者
Hongchi Liu,Xing Deng,Haijian Shao
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:140 (3): 2397-2424
标识
DOI:10.32604/cmes.2024.049737
摘要

The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle, profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing, fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable, thereby enhancing the accuracy of target identification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge, a novel UNet Residual Attention Network (URA-Net) is proposed.This paradigmatic approach materializes as an endto-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters, enabling the extraction of pertinent features from both preceding and current local data, depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder, resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net, demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset, URA-Net achieves a Peak Signal-to-Noise Ratio (PSNR) of 29.07 dB, surpassing the Dark Channel Prior (DCP) by 11.17 dB, the All-in-One Network for Dehazing (AOD) by 7.82 dB, the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing (OTM-AAL) by 5.37 dB, the Unsupervised Single Image Dehazing (USID) by 8.0 dB, and the Superpixelbased Remote Sensing Image Dehazing (SRD) by 8.5 dB.Particularly noteworthy, on the SateHaze1k dataset, URA-Net attains preeminence in overall performance, yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology, providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Kuzu采纳,获得10
1秒前
2秒前
3秒前
7秒前
ty-发布了新的文献求助10
8秒前
HBY完成签到,获得积分20
8秒前
CodeCraft应助周浩宇采纳,获得10
9秒前
10秒前
机灵雨发布了新的文献求助10
10秒前
甜甜的棉花糖完成签到,获得积分10
11秒前
Junex完成签到 ,获得积分10
11秒前
12秒前
peiter完成签到 ,获得积分10
13秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科研通AI2S应助李小棠采纳,获得30
20秒前
壮观茹嫣关注了科研通微信公众号
20秒前
20秒前
21秒前
早睡早起完成签到 ,获得积分10
23秒前
aLi发布了新的文献求助10
24秒前
29秒前
31秒前
31秒前
31秒前
高大草莓完成签到 ,获得积分10
32秒前
小新小新完成签到 ,获得积分10
34秒前
周浩宇发布了新的文献求助10
35秒前
37秒前
科研通AI5应助852采纳,获得100
39秒前
哈哈哈哈完成签到,获得积分10
40秒前
42秒前
42秒前
壮观茹嫣发布了新的文献求助10
47秒前
Kuzu发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842