Experimental Validation of an Enhanced MPPT Algorithm and an Optimal DC–DC Converter Design Powered by Metaheuristic Optimization for PV Systems

最大功率点跟踪 光伏系统 粒子群优化 计算机科学 功率(物理) 转换器 电子工程 算法 工程类 电气工程 逆变器 物理 量子力学 电压
作者
Efraín Méndez Flores,Alexandro Ortiz,Israel Macias,Arturo Molina
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (21): 8043-8043 被引量:14
标识
DOI:10.3390/en15218043
摘要

Nowadays, photovoltaic (PV) systems are responsible for over 994 TWH of the worldwide energy supply, which highlights their relevance and also explains why so much research has arisen to enhance their implementation; among this research, different optimization techniques have been widely studied to maximize the energy harvested under different environmental conditions (maximum power point tracking) and to optimize the efficiency of the required power electronics for the implementation of MPPT algorithms. On the one hand, an earthquake optimization algorithm (EA) was introduced as a multi-objective optimization tool for DC–DC converter design, mostly to overcome component shortages by optimal replacement, but it had never been tested (until now) for PV applications. On the other hand, the original EA was also taken as inspiration for a promising EA-based MPPT, which presumably enabled a solution with simple parametric calibration and improved dynamic behavior; yet prior to this research, the EA-MPPT had never been experimentally validated. Hence, this work fills the gap and provides the first implementation of the EA-based MPPT, validating its performance and suitability under real physical conditions, where the experimental testbed was optimized through the EA design methodology for DC–DC converters and implemented for the first time for PV applications. The results present energy waste reduction between 12 and 36% compared to MPPTs based on perturb and observe and particle swarm optimization; meanwhile, the designed converter achieved 7.3% current ripple, which is between 2.7 and 12.7% less than some industrial converters, and it had almost 90% efficiency at nominal operation. Finally, the EA-MPPT proved simple enough to be implemented even through an 8-bit MCU (ATmega328P from Arduino UNO).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蝉鸣发布了新的文献求助10
1秒前
2秒前
芥末奶半糖加冰完成签到,获得积分10
2秒前
2秒前
Akim应助有魅力书雪采纳,获得10
2秒前
科研通AI5应助koko采纳,获得10
3秒前
3秒前
白洋洋发布了新的文献求助10
3秒前
玉子烧完成签到,获得积分10
3秒前
3秒前
yang完成签到,获得积分10
4秒前
Hello应助拉长的凌旋采纳,获得10
4秒前
yls123发布了新的文献求助10
6秒前
花花完成签到,获得积分10
6秒前
Leemon33完成签到,获得积分20
6秒前
6秒前
6秒前
qq发布了新的文献求助10
6秒前
ffff发布了新的文献求助10
7秒前
万能图书馆应助ZZP27采纳,获得30
8秒前
zzzz关注了科研通微信公众号
8秒前
顾家老攻完成签到,获得积分10
8秒前
8秒前
Asahi发布了新的文献求助10
8秒前
8秒前
zc发布了新的文献求助10
9秒前
南宫士晋发布了新的文献求助30
10秒前
淼鑫完成签到,获得积分10
10秒前
酷波er应助Leemon33采纳,获得80
10秒前
快乐大炮发布了新的文献求助10
10秒前
娃哈哈完成签到,获得积分10
11秒前
bioglia完成签到,获得积分10
11秒前
11秒前
同城代打发布了新的文献求助10
11秒前
xzy完成签到 ,获得积分10
11秒前
12秒前
Platinum完成签到,获得积分10
12秒前
找找找文献完成签到,获得积分10
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4237062
求助须知:如何正确求助?哪些是违规求助? 3771007
关于积分的说明 11843291
捐赠科研通 3427106
什么是DOI,文献DOI怎么找? 1880868
邀请新用户注册赠送积分活动 933367
科研通“疑难数据库(出版商)”最低求助积分说明 840303