Predicting groundwater potential assessment in water-deficient islands based on convolutional neural networks

水文地质学 地下水 岩性 水文学(农业) 河口 环境科学 卷积神经网络 植被(病理学) 遥感 地质学 机器学习 计算机科学 岩土工程 海洋学 古生物学 医学 病理
作者
Haoli Xu,Xing Yang,Daqing Wang,Yihua Hu,Yue Shi,Zijian Cheng,Zhixin Liu,Lu Zhao,Liang Shi,Zhenyu Liang,Dongtao Zhu
出处
期刊:The Egyptian Journal of Remote Sensing and Space Science [Elsevier BV]
卷期号:25 (4): 1013-1023 被引量:6
标识
DOI:10.1016/j.ejrs.2022.11.002
摘要

Due to the special hydrogeological features of the sea islands, the distribution of groundwater is difficult to assess. In order to improve the accuracy of the predicting groundwater potential assessment(GPA) in islands region. We tried to use the convolutional neural networks(CNN) and took lithology, aspect, slope, water density, vegetation fraction, soil humidity and land surface temperature as the remote sensing assessment indicators. The island area of Pearl River Estuary, China was selected as the study area. The groundwater situation of Wailingding Island was taken as the sample data of the total area, and the map of this island was divided into 24 × 22 grids. The levels of GPA of each small grid was determined by hydrogeological maps with results of geophysical method and wells or springs data. Meanwhile, the corresponding data were enlarged and the sample label data set was made. Using the CNN model of learning, training and testing, analysis of groundwater potential and each coupling correlation between remote sensing indicators constantly. After 1500 times of training, loss of model dropped to 0.3113, the accuracy of model was 96.96%. A good 5 levels classification prediction of GPA model was received. The AUC of ROC curve and significance level (P) of the CNN model were 0.855 and 0.001 respectively, which were better than the results of the classic GRSFAI model. The results showed that the prediction of GPA based on CNN model can effectively assess the groundwater distribution levels in the Pearl River Estuary island area, which can provide a certain reference value or a GPA model for the other water-deficient islands. Moreover, the obtained sample set of groundwater volume distribution of bedrock islands can be used as a valuable data source for further in-depth research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyw完成签到,获得积分10
刚刚
wch666发布了新的文献求助10
2秒前
www完成签到 ,获得积分10
3秒前
酷波er应助无奈世立采纳,获得10
4秒前
子非鱼完成签到,获得积分10
4秒前
5秒前
5秒前
一二完成签到,获得积分10
6秒前
烟花应助dungaway采纳,获得10
6秒前
6秒前
科研通AI2S应助li采纳,获得30
7秒前
科研通AI2S应助li采纳,获得30
7秒前
FashionBoy应助be采纳,获得30
7秒前
17853723535完成签到,获得积分10
8秒前
野性的凡蕾完成签到,获得积分10
8秒前
情怀应助贾晓宇采纳,获得10
9秒前
早睡早起发布了新的文献求助30
10秒前
饮一杯为谁丶完成签到,获得积分10
11秒前
Andy_111完成签到,获得积分10
11秒前
12秒前
12秒前
超级小刺猬完成签到 ,获得积分10
13秒前
JamesPei应助JIANGSHUI采纳,获得30
14秒前
an应助17853723535采纳,获得10
14秒前
15秒前
Present完成签到,获得积分10
17秒前
张建威完成签到,获得积分10
18秒前
代扁扁完成签到 ,获得积分10
19秒前
20秒前
dungaway发布了新的文献求助10
20秒前
早睡早起完成签到,获得积分10
20秒前
20秒前
21秒前
害怕的听筠完成签到,获得积分10
23秒前
顾矜应助Monica采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
24秒前
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
吧啦吧啦发布了新的文献求助10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729