Boosting CO2 Uptake from Waste Concrete Powder Using Artificial Intelligence and the Marine Predators Algorithm

碳化作用 自适应神经模糊推理系统 均方误差 环境科学 推理系统 决定系数 二氧化碳 数学 环境工程 材料科学 算法 计算机科学 统计 化学 复合材料 模糊逻辑 人工智能 模糊控制系统 有机化学
作者
Hegazy Rezk,Ali Alahmer,Rania M. Ghoniem,Samer As’ad
出处
期刊:Processes [MDPI AG]
卷期号:11 (9): 2655-2655 被引量:8
标识
DOI:10.3390/pr11092655
摘要

Waste concrete powder (WCP) is emerging as a potential method of adoption for CO2 sequestration due to its ability to chemically react with carbon dioxide and trap it within its structure. This study explores the application of artificial intelligence (AI) and the Marine Predators Algorithm (MPA) to maximize the absorption of CO2 from waste concrete powder generated by recycling plants for building and demolition debris. Initially, a model is developed to assess CO2 uptake according to carbonation time (CT) and water-to-solid ratio (WSR), utilizing the adaptive neuro-fuzzy inference system (ANFIS) modeling approach. Subsequently, the MPA is employed to estimate the optimal values for CT and WSR, thereby maximizing CO2 uptake. A significant improvement in modeling accuracy is evident when the ANOVA method is replaced with ANFIS, leading to a substantial increase of approximately 19% in the coefficient of determination (R-squared) from 0.84, obtained through ANOVA, to an impressive 0.9999 obtained through the implementation of ANFIS; furthermore, the utilization of ANFIS yields a substantial reduction in the root mean square error (RMSE) from 1.96, as indicated by ANOVA, to an impressively low value of 0.0102 with ANFIS. The integration of ANFIS and MPA demonstrates impressive results, with a nearly 30% increase in the percentage value of CO2 uptake. The highest CO2 uptake of 3.86% was achieved when the carbonation time was 54.3 h, and the water-to-solid ratio was 0.27. This study highlights the potential of AI and the MPA as effective tools for optimizing CO2 absorption from waste concrete powder, contributing to sustainable waste management practices in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然老头完成签到,获得积分10
刚刚
小二郎应助陈迹采纳,获得10
刚刚
小蘑菇应助syp采纳,获得10
刚刚
1秒前
1秒前
yeye发布了新的文献求助10
1秒前
1秒前
1秒前
慧1111111应助福禄小金刚采纳,获得10
1秒前
cl完成签到,获得积分10
2秒前
2秒前
Yangshu发布了新的文献求助10
3秒前
领导范儿应助VIGO采纳,获得10
3秒前
硕shuoer发布了新的文献求助30
3秒前
情怀应助如梦如画采纳,获得10
3秒前
顾矜应助陈浩浪采纳,获得10
4秒前
www111发布了新的文献求助10
4秒前
Aran完成签到 ,获得积分10
4秒前
龙须糖完成签到,获得积分10
5秒前
5秒前
土豆完成签到,获得积分10
5秒前
斯文败类应助Cookie采纳,获得30
5秒前
6秒前
lili发布了新的文献求助10
6秒前
6秒前
无线发布了新的文献求助10
6秒前
6秒前
shayeeeeee完成签到,获得积分10
7秒前
7秒前
7秒前
Red-Rain发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
红桃小六发布了新的文献求助100
7秒前
紫藤花完成签到,获得积分10
8秒前
8秒前
乐观的中心完成签到,获得积分10
8秒前
9秒前
lzj发布了新的文献求助10
9秒前
标致金毛完成签到 ,获得积分10
10秒前
SOFC发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552414
求助须知:如何正确求助?哪些是违规求助? 4637165
关于积分的说明 14647891
捐赠科研通 4579030
什么是DOI,文献DOI怎么找? 2511290
邀请新用户注册赠送积分活动 1486413
关于科研通互助平台的介绍 1457556