Impacts of three approaches on collaborative knowledge building, group performance, behavioural engagement, and socially shared regulation in online collaborative learning

协作学习 背景(考古学) 学习分析 计算机科学 认知 知识管理 在线讨论 计算机支持的协作学习 合作学习 数学教育 心理学 教学方法 数据科学 万维网 古生物学 神经科学 生物
作者
Lanqin Zheng,Yunchao Fan,Zichen Huang,Lei Gao
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:40 (1): 21-36 被引量:4
标识
DOI:10.1111/jcal.12860
摘要

Abstract Background Online collaborative learning has been widely adopted in the field of education. However, learners often find it difficult to engage in collaboratively building knowledge and jointly regulating online collaborative learning. Objectives The study compared the impacts of the three learning approaches on collaborative knowledge building, group performance, socially shared regulation, behavioural engagement, and cognitive load in an online collaborative learning context. The first is the automatic construction of knowledge graphs (CKG) approach, the second is the automatic analysis of topic distribution (ATD) approach, and the third one is the traditional online collaborative learning (OCL) approach without any analytic feedback. Methods A total of 144 college students participated in a quasi‐experimental study, where 48 students learned with the CKG approach, 48 students used the ATD approach, and the remaining 48 students adopted the OCL approach. Results and Conclusions The findings revealed that the CKG approach could encourage collaborative knowledge building, socially shared regulation, and behavioural engagement in building knowledge better than the ATD and OCL approaches. Both the CKG and ATD approaches could better improve group performance than the OCL approach. Furthermore, the CKG approach did not increase learners' cognitive load, but the ATD approach did. Implications This study has theoretical and practical implications for utilising learning analytics in online collaborative learning. Furthermore, deep neural network models are powerful for constructing knowledge graphs and analysing topic distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丑丑虎发布了新的文献求助10
1秒前
1秒前
JamesPei应助研友_LjDyNZ采纳,获得10
1秒前
2秒前
4秒前
小蘑菇应助兴奋的一凤采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
10秒前
322628完成签到,获得积分10
10秒前
liuliu应助白昼采纳,获得20
10秒前
10秒前
11秒前
Jasper应助小小莫采纳,获得10
11秒前
充电宝应助优雅的水壶采纳,获得10
11秒前
星辰大海应助顾志成采纳,获得10
13秒前
是哇哦完成签到,获得积分20
13秒前
14秒前
14秒前
彭于晏应助风中的安珊采纳,获得10
15秒前
欢喜的天空完成签到,获得积分20
15秒前
polly发布了新的文献求助10
16秒前
18秒前
wangjue发布了新的文献求助10
20秒前
机灵柚子应助shangx采纳,获得10
23秒前
23秒前
polly完成签到,获得积分10
24秒前
FashionBoy应助要吃虾饺吗采纳,获得30
25秒前
25秒前
烟花应助999999采纳,获得10
26秒前
26秒前
CodeCraft应助polly采纳,获得10
27秒前
阿白白发布了新的文献求助10
27秒前
28秒前
snow发布了新的文献求助10
28秒前
jt完成签到 ,获得积分10
29秒前
ccc完成签到,获得积分10
29秒前
922发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397