已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impacts of three approaches on collaborative knowledge building, group performance, behavioural engagement, and socially shared regulation in online collaborative learning

协作学习 背景(考古学) 学习分析 计算机科学 认知 知识管理 在线讨论 计算机支持的协作学习 合作学习 数学教育 心理学 教学方法 数据科学 万维网 古生物学 神经科学 生物
作者
Lanqin Zheng,Yunchao Fan,Zichen Huang,Lei Gao
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:40 (1): 21-36 被引量:10
标识
DOI:10.1111/jcal.12860
摘要

Abstract Background Online collaborative learning has been widely adopted in the field of education. However, learners often find it difficult to engage in collaboratively building knowledge and jointly regulating online collaborative learning. Objectives The study compared the impacts of the three learning approaches on collaborative knowledge building, group performance, socially shared regulation, behavioural engagement, and cognitive load in an online collaborative learning context. The first is the automatic construction of knowledge graphs (CKG) approach, the second is the automatic analysis of topic distribution (ATD) approach, and the third one is the traditional online collaborative learning (OCL) approach without any analytic feedback. Methods A total of 144 college students participated in a quasi‐experimental study, where 48 students learned with the CKG approach, 48 students used the ATD approach, and the remaining 48 students adopted the OCL approach. Results and Conclusions The findings revealed that the CKG approach could encourage collaborative knowledge building, socially shared regulation, and behavioural engagement in building knowledge better than the ATD and OCL approaches. Both the CKG and ATD approaches could better improve group performance than the OCL approach. Furthermore, the CKG approach did not increase learners' cognitive load, but the ATD approach did. Implications This study has theoretical and practical implications for utilising learning analytics in online collaborative learning. Furthermore, deep neural network models are powerful for constructing knowledge graphs and analysing topic distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
小小完成签到 ,获得积分10
7秒前
yanxi发布了新的文献求助10
8秒前
泥娃娃完成签到,获得积分10
8秒前
李健的小迷弟应助susu采纳,获得30
11秒前
不安青牛应助闪闪的熠彤采纳,获得20
13秒前
几一昂完成签到 ,获得积分10
13秒前
NexusExplorer应助英勇的天奇采纳,获得10
14秒前
HXY给HXY的求助进行了留言
17秒前
17秒前
顾矜应助Dopamine采纳,获得10
21秒前
yanxi完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
QJ0发布了新的文献求助10
29秒前
bless发布了新的文献求助10
29秒前
隐形曼青应助大大怪将军采纳,获得10
29秒前
29秒前
32秒前
大大怪将军完成签到,获得积分10
34秒前
喜悦的小土豆完成签到 ,获得积分10
36秒前
还是速度点完成签到,获得积分10
36秒前
40秒前
不安青牛应助淡然的念珍采纳,获得10
44秒前
疯狂的寻琴完成签到 ,获得积分10
44秒前
46秒前
无私的含海完成签到,获得积分10
47秒前
50秒前
50秒前
50秒前
科研通AI6应助黑暗与黎明采纳,获得10
53秒前
未来可期发布了新的文献求助10
53秒前
你好帅的哦完成签到,获得积分10
57秒前
韦老虎发布了新的文献求助340
1分钟前
门门完成签到 ,获得积分10
1分钟前
1797472009完成签到 ,获得积分10
1分钟前
古渡应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259