已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advanced crack detection and segmentation on bridge decks using deep learning

分割 桥(图论) 计算机科学 人工智能 结构工程 桥面 深度学习 过程(计算) 网(多面体) 模式识别(心理学) 目标检测 甲板 工程类 数学 几何学 医学 操作系统 内科学
作者
Thai Son Tran,Son Dong Nguyen,Hyun Jong Lee,Van Phuc Tran
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:400: 132839-132839 被引量:32
标识
DOI:10.1016/j.conbuildmat.2023.132839
摘要

Detecting and measuring cracks on a bridge deck is crucial for preventing further damage and ensuring safety. However, manual methods are slow and subjective, highlighting the need for an efficient solution to detect and measure crack length and width. This study proposes a novel process-based deep learning approach for detecting and segmenting cracks on the bridge deck. Five state-of-the-art object detection networks were evaluated for their performance in detecting cracks: Faster RCNN-ResNet50, Faster RCNN-ResNet101, RetinaNet-ResNet50, RetinaNet-ResNet101, and YOLOv7. Additionally, two object segmentation networks, U-Net, and pix2pix, were optimized by experimenting with various network depths, activation functions, loss functions, and data augmentation to segment the detected cracks. The results showed that YOLOv7 outperformed both Faster RCNN and RetinaNet with both ResNet50 and ResNet101 backbones in terms of both speed and accuracy. Furthermore, the proposed U-Net is better than the mainstream U-Net and pix2pix networks. Based on these results, YOLOv7 and the proposed U-Net are integrated for detecting and segmenting cracks on a bridge deck. The proposed method was then applied to two bridges in South Korea to test its performance, and the results showed that it could detect crack length with an accuracy of 92.38 percent. Moreover, the proposed method can determine crack width and classify it with an R2 value of 0.87 and an average accuracy of 91 percent, respectively. In summary, this study provides an efficient and reliable method for detecting, measuring, and classifying cracks on a bridge deck surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助启震采纳,获得10
1秒前
酷波er应助bzqqqqq采纳,获得10
1秒前
英姑应助风车采纳,获得10
2秒前
皮皮完成签到 ,获得积分10
3秒前
MRM发布了新的文献求助10
5秒前
archer01完成签到,获得积分20
8秒前
9秒前
11秒前
乐乐应助鲁棒的砰砰砰采纳,获得10
15秒前
16秒前
16秒前
现代访云发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
启震发布了新的文献求助10
18秒前
20秒前
风车发布了新的文献求助10
20秒前
奇想之年完成签到,获得积分10
21秒前
slx发布了新的文献求助10
21秒前
23秒前
启震完成签到,获得积分10
23秒前
24秒前
在水一方应助现代访云采纳,获得10
27秒前
Hello应助普鲁斯特采纳,获得10
29秒前
活力的妙之完成签到,获得积分10
29秒前
平常馒头完成签到 ,获得积分10
31秒前
英姑应助slx采纳,获得10
31秒前
称心的青旋完成签到,获得积分10
31秒前
斑马兽发布了新的文献求助10
36秒前
yss关闭了yss文献求助
36秒前
38秒前
李健应助寒冷的大笑采纳,获得10
41秒前
大七完成签到 ,获得积分10
42秒前
滕擎完成签到,获得积分10
44秒前
50秒前
56秒前
57秒前
思睿观通完成签到 ,获得积分10
57秒前
迷路博完成签到,获得积分10
59秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897482
求助须知:如何正确求助?哪些是违规求助? 3441599
关于积分的说明 10822394
捐赠科研通 3166415
什么是DOI,文献DOI怎么找? 1749412
邀请新用户注册赠送积分活动 845306
科研通“疑难数据库(出版商)”最低求助积分说明 788630