Fast Recognition and Counting Method of Dragon Fruit Flowers and Fruits Based on Video Stream

园艺 成熟 人工智能 鉴定(生物学) 热带水果 计算机科学 计算机视觉 植物 生物
作者
Xiuhua Li,Xiang Wang,Pauline Ong,Zeren Yi,Lu Ding,Chao Han
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (20): 8444-8444 被引量:2
标识
DOI:10.3390/s23208444
摘要

Dragon fruit (Hylocereus undatus) is a tropical and subtropical fruit that undergoes multiple ripening cycles throughout the year. Accurate monitoring of the flower and fruit quantities at various stages is crucial for growers to estimate yields, plan orders, and implement effective management strategies. However, traditional manual counting methods are labor-intensive and inefficient. Deep learning techniques have proven effective for object recognition tasks but limited research has been conducted on dragon fruit due to its unique stem morphology and the coexistence of flowers and fruits. Additionally, the challenge lies in developing a lightweight recognition and tracking model that can be seamlessly integrated into mobile platforms, enabling on-site quantity counting. In this study, a video stream inspection method was proposed to classify and count dragon fruit flowers, immature fruits (green fruits), and mature fruits (red fruits) in a dragon fruit plantation. The approach involves three key steps: (1) utilizing the YOLOv5 network for the identification of different dragon fruit categories, (2) employing the improved ByteTrack object tracking algorithm to assign unique IDs to each target and track their movement, and (3) defining a region of interest area for precise classification and counting of dragon fruit across categories. Experimental results demonstrate recognition accuracies of 94.1%, 94.8%, and 96.1% for dragon fruit flowers, green fruits, and red fruits, respectively, with an overall average recognition accuracy of 95.0%. Furthermore, the counting accuracy for each category is measured at 97.68%, 93.97%, and 91.89%, respectively. The proposed method achieves a counting speed of 56 frames per second on a 1080ti GPU. The findings establish the efficacy and practicality of this method for accurate counting of dragon fruit or other fruit varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WL完成签到 ,获得积分10
刚刚
刚刚
刚刚
ShengjuChen完成签到 ,获得积分10
2秒前
4秒前
4秒前
zrs发布了新的文献求助10
5秒前
AYF完成签到,获得积分10
7秒前
闪闪完成签到,获得积分10
8秒前
秋子发布了新的文献求助10
9秒前
10秒前
寒舟饮完成签到,获得积分10
11秒前
孔绍君完成签到 ,获得积分10
11秒前
飘逸的易梦完成签到,获得积分10
12秒前
完美世界应助刀锋采纳,获得10
15秒前
15秒前
研友_LjDyNZ完成签到,获得积分10
16秒前
芽芽豆完成签到 ,获得积分10
17秒前
jackiewang发布了新的文献求助10
17秒前
17秒前
17秒前
CipherSage应助单眼皮女生采纳,获得10
18秒前
追风少年i发布了新的文献求助10
20秒前
Owen发布了新的文献求助10
20秒前
冷妹君完成签到,获得积分10
20秒前
尺八发布了新的文献求助10
21秒前
英姑应助zrs采纳,获得10
21秒前
Joey完成签到,获得积分10
23秒前
23秒前
霍师傅发布了新的文献求助10
23秒前
刀锋给刀锋的求助进行了留言
24秒前
传奇3应助清脆的雁易采纳,获得10
27秒前
27秒前
不倦应助尺八采纳,获得10
27秒前
JL完成签到,获得积分10
27秒前
Milo完成签到,获得积分10
29秒前
假装学霸完成签到 ,获得积分10
29秒前
29秒前
乐乐应助万类霜天竞自由采纳,获得10
29秒前
jackiewang完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339