Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis

计算机科学 编码器 学习迁移 人工智能 分割 深度学习 特征学习 变压器 模式识别(心理学) 医学影像学 磁共振成像 可视化 机器学习 电压 放射科 物理 操作系统 医学 量子力学
作者
Eunji Jun,Seungwoo Jeong,Da-Woon Heo,Heung‐Il Suk
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:14
标识
DOI:10.1109/tnnls.2023.3308712
摘要

Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effectively models 3-D volumetric images as a sequence of 2-D image slices. To improve the high-level representation in 3-D-form empowering spatial relations, we use a multiview approach that leverages information from three planes of the 3-D volume, while providing parameter-efficient training. For building a source model generally applicable to various tasks, we pretrain the model using self-supervised learning (SSL) for masked encoding vector prediction as a proxy task, using a large-scale normal, healthy brain magnetic resonance imaging (MRI) dataset. Our pretrained model is evaluated on three downstream tasks: 1) brain disease diagnosis; 2) brain age prediction; and 3) brain tumor segmentation, which are widely studied in brain MRI research. Experimental results demonstrate that our Medical Transformer outperforms the state-of-the-art (SOTA) transfer learning methods, efficiently reducing the number of parameters by up to approximately 92% for classification and regression tasks and 97% for segmentation task, and it also achieves good performance in scenarios where only partial training samples are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯情的汉堡关注了科研通微信公众号
刚刚
研友_huang发布了新的文献求助10
1秒前
2秒前
4秒前
852应助andrele采纳,获得20
4秒前
guijunmola完成签到,获得积分10
4秒前
美好斓发布了新的文献求助30
5秒前
果汁发布了新的文献求助10
6秒前
窝窝完成签到,获得积分10
7秒前
7秒前
呓语完成签到,获得积分10
9秒前
9秒前
lilei完成签到 ,获得积分10
9秒前
11秒前
13秒前
14秒前
岳莹晓完成签到 ,获得积分10
15秒前
16秒前
16秒前
科研通AI2S应助cyw_1037405062采纳,获得10
17秒前
Chem驳回了Grayball应助
17秒前
18秒前
18秒前
20秒前
21秒前
helpmepaper应助andrele采纳,获得10
22秒前
23秒前
爆米花应助SAIL采纳,获得30
24秒前
27秒前
hhhhzx发布了新的文献求助10
29秒前
果果完成签到,获得积分20
31秒前
34秒前
35秒前
叶不言完成签到,获得积分10
36秒前
38秒前
40秒前
wly1111完成签到,获得积分10
41秒前
852应助顺利秋灵采纳,获得10
41秒前
皮雅霜完成签到,获得积分10
42秒前
深情安青应助暴躁的信封采纳,获得10
42秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191