Spiking neural network-based computational modeling of episodic memory

情景记忆 遗忘 计算机科学 编码(内存) 联想(心理学) 计算模型 人工智能 神经科学 心理学 认知 认知心理学 心理治疗师
作者
Rahul Shrivastava,Puspraj Singh Chauhan
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (15): 2231-2245 被引量:2
标识
DOI:10.1080/10255842.2023.2275544
摘要

In this research article, a spiking neural network-based simulation of the hippocampus is performed to model the functionalities of episodic memory. The purpose of the simulation is to find a computational model through the biological architecture of the hippocampus and correct values for their architectural biological parameters to support the episodic memory functionalities. The episodic store of the model is represented by the collection of events, where each event is further subdivided into coactive activities of experience. The model has tried to mimic the three functionalities of episodic memory, which are pattern separation, pattern association, and their recallings. In pattern separation model used the dentate biological connectivity to generate almost different output patterns corresponding to similar input patterns to reduce interference between two similar memory traces so that ambiguity can be reduced during recalling. In pattern association, an STDP based event encoding and forgetting mechanism are used to mimic the encoding function of the CA3 region in which the coactive activities get associated with each other. A decoder is proposed based on CA1, which can answer the stored event related queries. Along with these functionalities model also supports recalling and encoding based forgetting. Experimental work is performed on the model for the given set of events to check for the pattern separation efficiency, pattern completion efficiency and to check the capability of decoding the answer. An empirical analysis of the results is done and compared with the SMRITI model of episodic memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stephendo发布了新的文献求助10
刚刚
太叔静竹发布了新的文献求助10
刚刚
1秒前
嘻嘻嘻发布了新的文献求助10
1秒前
1秒前
烟花应助小钢炮采纳,获得10
1秒前
2秒前
2秒前
3秒前
蝈蝈发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
爱吃橙子完成签到 ,获得积分10
5秒前
wenxian发布了新的文献求助10
6秒前
嘻嘻嘻完成签到,获得积分20
7秒前
虞剑发布了新的文献求助10
8秒前
Liujialei发布了新的文献求助10
8秒前
Jackie完成签到 ,获得积分10
8秒前
核桃发布了新的文献求助10
8秒前
考拉发布了新的文献求助10
8秒前
yyy发布了新的文献求助10
8秒前
赘婿应助689采纳,获得30
9秒前
zhtgang发布了新的文献求助10
9秒前
9秒前
烟花应助1234采纳,获得10
10秒前
10秒前
ZWK发布了新的文献求助10
10秒前
Hello应助嘻嘻嘻采纳,获得10
11秒前
张小咩咩完成签到 ,获得积分10
11秒前
12秒前
我是老大应助tjy采纳,获得10
12秒前
科研通AI6应助wenxian采纳,获得10
13秒前
13秒前
李爱国应助甜甜的亦寒采纳,获得10
13秒前
.....完成签到,获得积分10
14秒前
L_发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
风中虔纹发布了新的文献求助80
15秒前
牧觅云发布了新的文献求助20
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233466
求助须知:如何正确求助?哪些是违规求助? 3766944
关于积分的说明 11835578
捐赠科研通 3425258
什么是DOI,文献DOI怎么找? 1879794
邀请新用户注册赠送积分活动 932544
科研通“疑难数据库(出版商)”最低求助积分说明 839704