Spiking neural network-based computational modeling of episodic memory

情景记忆 遗忘 计算机科学 编码(内存) 联想(心理学) 计算模型 人工智能 神经科学 心理学 认知 认知心理学 心理治疗师
作者
Rahul Shrivastava,Puspraj Singh Chauhan
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (15): 2231-2245 被引量:2
标识
DOI:10.1080/10255842.2023.2275544
摘要

In this research article, a spiking neural network-based simulation of the hippocampus is performed to model the functionalities of episodic memory. The purpose of the simulation is to find a computational model through the biological architecture of the hippocampus and correct values for their architectural biological parameters to support the episodic memory functionalities. The episodic store of the model is represented by the collection of events, where each event is further subdivided into coactive activities of experience. The model has tried to mimic the three functionalities of episodic memory, which are pattern separation, pattern association, and their recallings. In pattern separation model used the dentate biological connectivity to generate almost different output patterns corresponding to similar input patterns to reduce interference between two similar memory traces so that ambiguity can be reduced during recalling. In pattern association, an STDP based event encoding and forgetting mechanism are used to mimic the encoding function of the CA3 region in which the coactive activities get associated with each other. A decoder is proposed based on CA1, which can answer the stored event related queries. Along with these functionalities model also supports recalling and encoding based forgetting. Experimental work is performed on the model for the given set of events to check for the pattern separation efficiency, pattern completion efficiency and to check the capability of decoding the answer. An empirical analysis of the results is done and compared with the SMRITI model of episodic memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Satan完成签到,获得积分10
刚刚
1秒前
修管子发布了新的文献求助10
1秒前
大模型应助陈转霞采纳,获得10
1秒前
Cx330发布了新的文献求助10
1秒前
2秒前
3秒前
燕烟完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
7秒前
小马甲应助李云采纳,获得10
8秒前
8秒前
yikefan发布了新的文献求助10
10秒前
10秒前
张新宇完成签到,获得积分10
10秒前
10秒前
李明泰发布了新的文献求助10
11秒前
云上人发布了新的文献求助10
12秒前
乐乐应助柳沙鸣采纳,获得10
12秒前
吃瓜米吃瓜米完成签到 ,获得积分10
13秒前
14秒前
14秒前
搞怪冷之完成签到 ,获得积分10
14秒前
我是老大应助RC_Wang采纳,获得10
15秒前
赵赵发布了新的文献求助10
15秒前
15秒前
15秒前
修管子完成签到,获得积分10
15秒前
张新宇发布了新的文献求助10
16秒前
今后应助李明泰采纳,获得10
16秒前
lbw完成签到 ,获得积分10
16秒前
海绵宝宝发布了新的文献求助10
17秒前
17秒前
heiye完成签到,获得积分10
17秒前
科研通AI6应助Glorious采纳,获得10
18秒前
脑洞疼应助我想查文献采纳,获得10
19秒前
jingjing完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914