SAMUS: Adapting Segment Anything Model for Clinically-Friendly and Generalizable Ultrasound Image Segmentation

计算机科学 分割 渲染(计算机图形) 人工智能 编码器 软件部署 特征(语言学) 计算机视觉 模式识别(心理学) 哲学 语言学 操作系统
作者
Xian Lin,Yangyang Xiang,Zhang Li,Xin Yang,Zengqiang Yan,Li Yu
出处
期刊:Cornell University - arXiv 被引量:17
标识
DOI:10.48550/arxiv.2309.06824
摘要

Segment anything model (SAM), an eminent universal image segmentation model, has recently gathered considerable attention within the domain of medical image segmentation. Despite the remarkable performance of SAM on natural images, it grapples with significant performance degradation and limited generalization when confronted with medical images, particularly with those involving objects of low contrast, faint boundaries, intricate shapes, and diminutive sizes. In this paper, we propose SAMUS, a universal model tailored for ultrasound image segmentation. In contrast to previous SAM-based universal models, SAMUS pursues not only better generalization but also lower deployment cost, rendering it more suitable for clinical applications. Specifically, based on SAM, a parallel CNN branch is introduced to inject local features into the ViT encoder through cross-branch attention for better medical image segmentation. Then, a position adapter and a feature adapter are developed to adapt SAM from natural to medical domains and from requiring large-size inputs (1024x1024) to small-size inputs (256x256) for more clinical-friendly deployment. A comprehensive ultrasound dataset, comprising about 30k images and 69k masks and covering six object categories, is collected for verification. Extensive comparison experiments demonstrate SAMUS's superiority against the state-of-the-art task-specific models and universal foundation models under both task-specific evaluation and generalization evaluation. Moreover, SAMUS is deployable on entry-level GPUs, as it has been liberated from the constraints of long sequence encoding. The code, data, and models will be released at https://github.com/xianlin7/SAMUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leodu发布了新的文献求助10
3秒前
咎道天发布了新的文献求助20
3秒前
在水一方应助通行证采纳,获得10
4秒前
李健的小迷弟应助卿莞尔采纳,获得10
6秒前
豆本豆完成签到,获得积分10
7秒前
陶世立完成签到 ,获得积分10
7秒前
8秒前
cc完成签到 ,获得积分10
9秒前
9秒前
豆本豆发布了新的文献求助10
13秒前
14秒前
14秒前
含蓄的荔枝应助博林大师采纳,获得10
14秒前
14秒前
啾一口香菜完成签到 ,获得积分10
15秒前
wangxiaoyu发布了新的文献求助10
15秒前
16秒前
leodu完成签到,获得积分10
17秒前
18秒前
拥梦发布了新的文献求助10
19秒前
巧可脆脆发布了新的文献求助10
20秒前
听风完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
22秒前
科研狂魔应助灰木采纳,获得10
24秒前
通行证发布了新的文献求助10
26秒前
27秒前
糊涂的剑完成签到,获得积分10
29秒前
yeziyang发布了新的文献求助10
29秒前
cherry完成签到,获得积分10
30秒前
科研通AI5应助文艺的紫萍采纳,获得10
31秒前
糊涂的剑发布了新的文献求助10
31秒前
万能图书馆应助wangxiaoyu采纳,获得10
32秒前
aaaabc完成签到 ,获得积分10
35秒前
诚心的剑完成签到,获得积分10
35秒前
36秒前
37秒前
Ava应助糊涂的剑采纳,获得10
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826600
求助须知:如何正确求助?哪些是违规求助? 3368946
关于积分的说明 10452907
捐赠科研通 3088451
什么是DOI,文献DOI怎么找? 1699146
邀请新用户注册赠送积分活动 817272
科研通“疑难数据库(出版商)”最低求助积分说明 770136