光容积图
计算机科学
人工智能
分割
支持向量机
生命体征
残余物
计算机视觉
希尔伯特-黄变换
模式识别(心理学)
基本事实
预处理器
算法
滤波器(信号处理)
医学
外科
作者
Kratika Gupta,Ruchika Sinhal,Sagarkumar S. Badhiye
标识
DOI:10.1002/jbio.202300286
摘要
Abstract This article aims to predict vital signs like heart rate (HR), respiration rate, and arterial oxygen saturation using ambient light video, eliminating chronic distortions through improved frame quality with BER estimation. The study employs the cascade residual CNN‐FPNR technique for preprocessing and SNR enhancement using energy variance maximization. The image cascade network (ICNet) facilitates segmentation, achieving strong segmentation in low‐light ambient videos. Remote photoplethysmography (iPPG) enables noncontact vital sign monitoring, predicting HR and respiratory rate (RR). An innovative noninvasive temperature and cyclical algorithm, incorporating principal component analysis and fast Fourier transform, evaluate patient HR and RR. To address challenges related to involuntary movements, a dynamic time‐warping‐based optimization method is used for precise region selection. The study introduces an intensity variance‐based threshold analysis for arterial oxygen saturation level determination. Ultimately, the support vector machine (SVM) classification technique evaluates the ground truth, showcasing the system's promising potential for remote and accurate vital sign assessment.
科研通智能强力驱动
Strongly Powered by AbleSci AI