TSMPN-PSI: high-performance polarization scattering imaging based on three-stage multi-pipeline networks

极化(电化学) 计算机科学 散射 人工智能 光学 计算机视觉 模式识别(心理学) 物理 化学 物理化学
作者
Xueqiang Fan,Bing Lin,Kai Guo,Bingyi Liu,Zhongyi Guo
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (23): 38097-38097 被引量:11
标识
DOI:10.1364/oe.501269
摘要

Polarization imaging, which provides multidimensional information beyond traditional intensity imaging, has prominent advantages for complex imaging tasks, particularly in scattering environments. By introducing deep learning (DL) into computational imaging and sensing, polarization scattering imaging (PSI) has obtained impressive progresses, however, it remains a challenging but long-standing puzzle due to the fact that scattering medium can result in significant degradation of the object information. Herein, we explore the relationship between multiple polarization feature learning strategy and the PSI performances, and propose a new multi-polarization driven multi-pipeline (MPDMP) framework to extract rich hierarchical representations from multiple independent polarization feature maps. Based on the MPDMP framework, we introduce a well-designed three-stage multi-pipeline networks (TSMPN) architecture to achieve the PSI, named TSMPN-PSI. The proposed TSMPN-PSI comprises three stages: pre-processing polarization image for de-speckling, multiple polarization feature learning, and target information reconstruction. Furthermore, we establish a real-world polarization scattering imaging system under active light illumination to acquire a dataset of real-life scenarios for training the model. Both qualitative and quantitative experimental results show that the proposed TSMPN-PSI achieves higher generalization performance than other methods on three testing data sets refer to imaging distances, target structures, and target materials and their background materials. We believe that our work presents a new framework for the PSI and paves the way to its pragmatic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拓跋天川发布了新的文献求助10
刚刚
panng完成签到,获得积分10
1秒前
666发布了新的文献求助10
1秒前
沉默南露发布了新的文献求助20
1秒前
陈宏宇发布了新的文献求助10
1秒前
Liangyu发布了新的文献求助30
1秒前
guozizi发布了新的文献求助30
2秒前
绝望了发布了新的文献求助10
2秒前
吕文晴完成签到 ,获得积分10
2秒前
shumin发布了新的文献求助10
4秒前
zhuo发布了新的文献求助10
5秒前
马婷婷发布了新的文献求助10
5秒前
田様应助kyxb采纳,获得10
6秒前
5114完成签到,获得积分10
6秒前
上官若男应助kyb5623采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
传奇3应助Swear123采纳,获得10
8秒前
8秒前
英俊的铭应助Zhuxiaole采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
CC1219应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
loser应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
JamesPei应助BYN采纳,获得10
10秒前
何何发布了新的文献求助10
10秒前
10秒前
11秒前
橙子完成签到,获得积分10
11秒前
sjj完成签到,获得积分10
11秒前
panng发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831