亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of an artificial intelligence prediction model and a survival risk stratification for lung metastasis in colorectal cancer from highly imbalanced data: A multicenter retrospective study

特征选择 随机森林 单变量 接收机工作特性 决策树 结直肠癌 人工智能 医学 逻辑回归 支持向量机 机器学习 多元统计 肿瘤科 预测建模 内科学 计算机科学 癌症
作者
Weiyuan Zhang,Xu Guan,Shuai Jiao,Guiyu Wang,Xishan Wang
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (12): 107107-107107 被引量:5
标识
DOI:10.1016/j.ejso.2023.107107
摘要

Background To assist clinicians with diagnosis and optimal treatment decision-making, we attempted to develop and validate an artificial intelligence prediction model for lung metastasis (LM) in colorectal cancer (CRC) patients. Methods The clinicopathological characteristics of 46037 CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database and 2779 CRC patients from a multi-center external validation set were collected retrospectively. After feature selection by univariate and multivariate analyses, six machine learning (ML) models, including logistic regression, K-nearest neighbor, support vector machine, decision tree, random forest, and balanced random forest (BRF), were developed and validated for the LM prediction. In addition, stratified LM patients by risk score were utilized for survival analysis. Results Extremely low rates of LM with 2.59% and 4.50% were present in the development and validation set. As the imbalanced learning strategy, the BRF model with an Area under the receiver operating characteristic curve (AUC) of 0.874 and an average precision (AP) of 0.184 performed best compares with other models and clinical predictor. Patients with LM in the high-risk group had significantly poorer survival (P<0.001) and failed to benefit from resection (P = 0.125). Conclusions In summary, we have utilized the BRF algorithm to develop an effective, non-invasive, and practical model for predicting LM in CRC patients based on highly imbalanced datasets. In addition, we have implemented a novel approach to stratify the survival risk of CRC patients with LM based the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
29秒前
Evian79167应助科研通管家采纳,获得10
29秒前
33秒前
43秒前
完美世界应助亭瞳采纳,获得10
48秒前
小蚂蚁完成签到,获得积分10
51秒前
56秒前
亭瞳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
咯哦发布了新的文献求助10
1分钟前
becky1234567发布了新的文献求助10
2分钟前
研友_VZG7GZ应助becky1234567采纳,获得10
2分钟前
Ava应助惑梦梦采纳,获得10
2分钟前
2分钟前
2分钟前
咯哦完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
成就的秋完成签到,获得积分20
2分钟前
共享精神应助未夕晴采纳,获得10
2分钟前
3分钟前
结实红酒发布了新的文献求助10
3分钟前
poki完成签到 ,获得积分10
3分钟前
善学以致用应助亭瞳采纳,获得10
3分钟前
结实红酒完成签到,获得积分10
3分钟前
未夕晴发布了新的文献求助20
3分钟前
3分钟前
亭瞳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
年鱼精完成签到 ,获得积分10
3分钟前
未夕晴发布了新的文献求助10
3分钟前
JamesPei应助nini采纳,获得10
3分钟前
3分钟前
绵绵球发布了新的文献求助10
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513091
求助须知:如何正确求助?哪些是违规求助? 3958373
关于积分的说明 12270217
捐赠科研通 3619878
什么是DOI,文献DOI怎么找? 1992111
邀请新用户注册赠送积分活动 1028230
科研通“疑难数据库(出版商)”最低求助积分说明 919512