Machine learning study on organic solar cells and virtual screening of designed non-fullerene acceptors

有机太阳能电池 接受者 Boosting(机器学习) 均方误差 光伏系统 阿达布思 富勒烯 均方根 随机森林 计算机科学 相关系数 材料科学 梯度升压 支持向量机 人工智能 数学 机器学习 化学 统计 物理 工程类 有机化学 量子力学 电气工程 凝聚态物理
作者
Cai‐Rong Zhang,Ming Li,Miao Zhao,Ji‐Jun Gong,Xiaomeng Liu,Yuhong Chen,Zi‐Jiang Liu,Youzhi Wu,Hongshan Chen
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:134 (15) 被引量:7
标识
DOI:10.1063/5.0169284
摘要

Machine learning (ML) is effective to establish the complicated trilateral relationship among structures, properties, and photovoltaic performance, which is fundamental issue in developing novel materials for improving power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, we constructed the database of 397 donor–acceptor pairs of OSCs with photovoltaic parameters and descriptor sets, which include donor–acceptor weight ratio within the active layer of the OSCs, root mean square of roughness, and 1024-bit Morgan molecular fingerprint for donor (Fp-D) and acceptor (Fp-A). The ML models random forest (RF), adaptive boosting (AdaBoost), extra trees regression, and gradient boosting regression trees were trained based on the descriptor set. The metrics determination coefficient (R2), Pearson correlation coefficient (r), root mean square error, and mean absolute error were selected to evaluate ML model performances. The results showed that the RF model exhibits the highest accuracy and stability for PCE prediction among these four ML models. Moreover, based on the decomposition of non-fullerene acceptors L8-BO, BTP-ec9, AQx-2, and IEICO, 20 acceptor molecules with symmetric A–D–A and A–π–D–π–A architectures were designed. The photovoltaic parameters of the designed acceptors were predicted using the trained RF model, and the virtual screening of designed acceptors was conducted based on the predicted PCE. The results indicate that six designed acceptors can reach the predicted PCE higher than 12% when P3HT was adopted as a donor. While PM6 was applied as a donor, five designed acceptors can achieve the predicted PCE higher than 16%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过无血发布了新的文献求助10
刚刚
hivivian完成签到,获得积分10
1秒前
Luna发布了新的文献求助10
1秒前
2秒前
科研助理完成签到 ,获得积分10
5秒前
5秒前
GC完成签到 ,获得积分10
5秒前
5秒前
7秒前
77完成签到,获得积分10
8秒前
8秒前
阿蕉完成签到 ,获得积分10
9秒前
lyh416发布了新的文献求助30
9秒前
10秒前
deng203发布了新的文献求助10
10秒前
10秒前
HH完成签到,获得积分10
11秒前
djnjv完成签到 ,获得积分10
12秒前
13秒前
Hommand_藏山完成签到,获得积分10
13秒前
把他们发布了新的文献求助10
14秒前
土豆发布了新的文献求助10
15秒前
科研通AI5应助小王爱芒果采纳,获得10
16秒前
清爽的水蓝应助GC采纳,获得10
16秒前
上官若男应助NXK采纳,获得10
17秒前
科研通AI5应助野性的海菡采纳,获得10
17秒前
18秒前
天想月完成签到,获得积分10
18秒前
18秒前
ding应助烟尘采纳,获得10
20秒前
21秒前
烟花应助Eason小川采纳,获得10
21秒前
21秒前
xingxinghan完成签到 ,获得积分10
21秒前
22秒前
23秒前
小蘑菇应助Luna采纳,获得10
23秒前
vae发布了新的文献求助10
23秒前
Xiaoxiao应助林佳欣采纳,获得10
24秒前
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743