Local–Global Gated Convolutional Neural Network for Hyperspectral Image Classification

计算机科学 卷积神经网络 判别式 模式识别(心理学) 人工智能 卷积(计算机科学) 特征(语言学) 块(置换群论) 水准点(测量) 上下文图像分类 特征提取 高光谱成像 深度学习 图像(数学) 人工神经网络 数学 哲学 语言学 地理 几何学 大地测量学
作者
Wei Fu,Kexin Ding,Xudong Kang,Dong Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3332226
摘要

How to learn the most valuable and useful features in convolutional neural networks (CNNs) is the key for accurate hyperspectral image classification (HSIC). Focused on this issue, we developed a local–global gated CNN (LGG-CNN), in this letter. The core is the simultaneous construction of local and global gated convolution blocks, with the aim to select highly discriminative information and filtering redundant information in hyperspectral images (HSIs). Different from traditional CNN methods treating all spectral–spatial features equally, the gated convolutions help in learning a normalized soft mask to guide the network to focus on valid features and neglect the invalid ones. Here, based on the CNN backbone, multilayer local features are first learned via gated convolutional architecture, which mainly consists of convolution operators and nonlinearly activation functions. At the same time, a global gated block (GGB) is designed to conduct feature serialization-mapping-patching operations, to learn global features from deeper layers with larger receptive fields. As a result, the local/GGBs can dynamically learn discriminative feature selection mechanisms for each channel at each spatial location. Then, the local and global features are fused at both the feature-level and decision-level. In this manner, the effective fusion of features by the multilayer LGG convolution blocks enables spatial interaction across layers, leading to further improvement in classification accuracy. Extensive experiments on three benchmark HSIC datasets demonstrate the superiority of LGG-CNN over some state-of-the-art methods. The source code of the proposed method is available at https://github.com/Ding-Kexin/LGG-CNN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DOKI完成签到,获得积分10
刚刚
yyy发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
zzzzz应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
5秒前
热心之槐应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
ZhouYW应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
科研通AI5应助淡淡的忧伤采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
MUMU完成签到,获得积分10
7秒前
暴走乄发布了新的文献求助10
7秒前
大气的愚志完成签到,获得积分20
9秒前
capricorn完成签到,获得积分10
10秒前
零零二完成签到 ,获得积分10
10秒前
11秒前
Vinaceliu完成签到,获得积分10
12秒前
兔叽完成签到,获得积分20
12秒前
行仔完成签到,获得积分10
14秒前
12591发布了新的文献求助10
17秒前
慕青应助QIQI采纳,获得10
18秒前
所所应助gliterr采纳,获得10
20秒前
陶淘淘完成签到,获得积分10
22秒前
lair完成签到,获得积分10
23秒前
传奇3应助快乐茗采纳,获得10
25秒前
善学以致用应助12591采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814385
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395440
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428