氯化胆碱
浸出(土壤学)
环境友好型
乙二醇
化学工程
深共晶溶剂
材料科学
稳定器
自愈水凝胶
废物管理
共晶体系
化学
有机化学
纳米技术
高分子化学
复合材料
环境科学
合金
生物
土壤科学
生态学
工程类
土壤水分
作者
Yifeng Wang,Eider Goikolea,Idoia Ruiz de Larramendi,Efraím Reyes,S. Lanceros‐Méndez,Qi Zhang
标识
DOI:10.1016/j.wasman.2023.08.047
摘要
With the aim of achieving carbon neutrality, new policies to promote electric vehicle (EV) deployment have been announced in various countries. As EV sales gain market-share, the demand for batteries is growing very rapidly, and this has raised concerns about the raw-material supply. Therefore, efficient and environmentally friendly recycling methods for lithium-ion batteries (LIBs) are mandatory to properly implement circular economy paradigms in this field. Hydrometallurgical recycling methods are characterized by their selectivity, high product purity as well as low energy consumption. In order to accomplish a close-loop recycling method, in this work we propose the use of a deep eutectic solvent (DES) and alginate hydrogels as leaching reagent and adsorbent, respectively, for their reusability, availability and biodegradability. The solubility and thermal stability of a choline chloride-ethylene glycol based DES (choline chloride: ethylene glycol = 1:2) were investigated, 180 °C being regarded as the temperature threshold for this DES, and reaching up to 1.12gCoL-1 solubility after 8 h leaching. Moreover, the DES can be reused after the eutectic state recreation with a performance over 80% with respect to the pristine DES. Calcium cross-linked sodium alginate hydrogels, which were immersed in ethylene glycol and dehydrated afterwards, were able to extract cobalt from the leachate with an efficiency of 92%. The aforementioned hydrogels can be reused after desorption and reach 91% of the performance of the pristine ones. The DES together with alginate hydrogel brings therefore a highly efficient and reusable close-loop recycling method.
科研通智能强力驱动
Strongly Powered by AbleSci AI