A novel rolling bearing fault diagnosis method based on parameter optimization variational mode decomposition with feature weighted reconstruction and multi-target attention convolutional neural networks under small samples

卷积神经网络 模式识别(心理学) 计算机科学 算法 断层(地质) 信号处理 人工神经网络 信号(编程语言) 特征(语言学) 信号重构 人工智能 电信 雷达 语言学 哲学 地震学 程序设计语言 地质学
作者
Chaoqun Hu,Yonghua Li,Zhe Chen,Zhihui Men
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (7) 被引量:5
标识
DOI:10.1063/5.0158412
摘要

To enhance the precision of rolling bearing fault diagnosis, an intelligent hybrid approach is proposed in this paper for signal processing and fault diagnosis in small samples. This approach is based on advanced techniques, combining parameter optimization variational mode decomposition weighted by multiscale permutation entropy (MPE) with maximal information coefficient and multi-target attention convolutional neural networks (MTACNN). First, an improved variational mode decomposition (VMD) is developed to denoise the raw signal. The whale optimization algorithm was used to optimize the penalty factor and mode component number in the VMD algorithm to obtain several intrinsic mode functions (IMFs). Second, separate MPE calculations are performed for both the raw signal and each of the IMF components obtained from the VMD decomposition; the results are used to calculate the maximum information coefficient (MIC). Subsequently, each MIC is normalized and converted to a weight coefficient for signal reconstruction. Ultimately, the reconstructed signals serve as input to the MTACNN for diagnosing rolling bearing faults. Results demonstrate that the signal processing approach exhibits superior noise reduction capability through simple processing. Furthermore, compared to several similar approaches, The method proposed for fault diagnosis achieves superior performance levels in the fault pattern recognition target and the fault severity recognition target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习猴发布了新的文献求助10
刚刚
刚刚
涵陌瑌完成签到 ,获得积分10
1秒前
CipherSage应助爱听歌的亦玉采纳,获得10
2秒前
东北发布了新的文献求助10
2秒前
2秒前
Ava应助完美如花采纳,获得30
2秒前
2秒前
浩气长存完成签到 ,获得积分10
3秒前
4秒前
时尚的沧海完成签到 ,获得积分10
4秒前
js发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
5秒前
5秒前
董球球发布了新的文献求助10
6秒前
xiaoxiaozhu发布了新的文献求助10
6秒前
SYLH应助Improve采纳,获得10
7秒前
流川封完成签到,获得积分10
7秒前
哈尔婧完成签到,获得积分10
7秒前
无花果应助乐糖采纳,获得10
7秒前
7秒前
仲侣弥月完成签到,获得积分10
8秒前
LYN发布了新的文献求助10
9秒前
9秒前
田様应助高贵的斑马采纳,获得10
10秒前
10秒前
zxy完成签到,获得积分10
10秒前
打打应助森水垚采纳,获得10
10秒前
研友_MLJmo8发布了新的文献求助10
11秒前
vimeid发布了新的文献求助10
11秒前
宋狗完成签到,获得积分20
12秒前
努力努力再努力CMY完成签到,获得积分20
12秒前
搜集达人应助LYN采纳,获得30
13秒前
一苇以航应助xiao142采纳,获得10
13秒前
14秒前
sht发布了新的文献求助10
14秒前
14秒前
14秒前
猪猪hero发布了新的文献求助30
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432