Effect of Degree of Branching on the Mechanism of Hyperbranched Polymer To Establish the Residual Resistance Factor in High-Permeability Porous Media

聚合物 支化(高分子化学) 材料科学 磁导率 润湿 吸附 多孔性 微观结构 多孔介质 化学工程 高分子化学 复合材料 化学 有机化学 工程类 生物化学
作者
Nanjun Lai,Yan Zhang,Fanhua Zeng,Tao Wu,Ning Zhou,Qian Xu,Zhongbin Ye
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:30 (7): 5576-5584 被引量:26
标识
DOI:10.1021/acs.energyfuels.6b00826
摘要

To improve a polymer's oil recovery power, it is imperative to discuss its residual resistance factor (RRF), which is a significant parameter in the field and is associated with the polymer molecular structure. This study investigated the capability of three kinds of hyperbranched polymers (HPDAs) with various degrees of branching to establish the RRF in high permeability porous media by way of a one-dimensional sandpack model under different polymer solution concentrations, permeabilities, and injection rates. In addition, the mechanisms of these polymers to establish the RRF were surveyed through altering the wettability of the rock surface. Furthermore, the diameter distribution and microstructure of the injected and produced polymer solution were determined by utilizing dynamic light scattering and scanning electron microscopy, respectively. The experimental results showed that the RRFs of three kinds of hyperbranched polymers were different in variation trend with changes in external conditions. As the degree of branching increased, the dominant mechanism of the polymer to establish retention and the RRF gradually shifted from surface adsorption to mechanical trapping. And the larger the proportion of the mechanical trapping effect was, the stronger the ability to build the RRF became. This was mainly because that the higher the degree of branching of the polymer is, the higher the branched chain number is, the larger the hydrodynamic radius of polymer solution becomes, the stronger the structure formed between end branches becomes, and the lesser the damage caused to the polymer by high permeability medium is.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助BlingBling采纳,获得10
1秒前
xcky0917完成签到,获得积分10
2秒前
4秒前
个性松发布了新的文献求助10
7秒前
7秒前
暮渔木鱼发布了新的文献求助10
8秒前
Chen发布了新的文献求助10
10秒前
10秒前
13秒前
王三歲完成签到,获得积分10
14秒前
x1nger发布了新的文献求助10
16秒前
sudaxia100发布了新的文献求助10
16秒前
17秒前
20秒前
英姑应助stt1011采纳,获得10
22秒前
坦率的夜玉完成签到,获得积分10
22秒前
小白应助Woshikeyandawang采纳,获得20
23秒前
BlingBling发布了新的文献求助10
23秒前
yll完成签到,获得积分10
24秒前
孙燕应助企鹅乌云采纳,获得30
25秒前
soapffz完成签到,获得积分10
26秒前
大地发布了新的文献求助10
26秒前
小二郎应助pyrene采纳,获得10
28秒前
iNk应助王三歲采纳,获得10
29秒前
30秒前
东山完成签到,获得积分10
30秒前
八九驳回了pluto应助
30秒前
32秒前
35秒前
共享精神应助陈补天采纳,获得10
39秒前
qimingran发布了新的文献求助50
39秒前
赘婿应助YKL99采纳,获得30
40秒前
科研通AI5应助纯真如松采纳,获得10
42秒前
43秒前
45秒前
48秒前
冰魂应助托妞采纳,获得20
49秒前
机智冬灵发布了新的文献求助10
49秒前
呱牛完成签到,获得积分10
49秒前
EMMA完成签到,获得积分10
49秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208