亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Overview of Magnetic Bearing Technology for Gas Turbine Engines

磁力轴承 方位(导航) 机械工程 转子(电动) 润滑 电磁铁 转子动力学 磁悬浮 工程类 定子 磁铁 计算机科学 人工智能
作者
Daniel J. Clark,Mark J. Jansen,Gerald T. Montague
链接
摘要

The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小年小少采纳,获得10
1秒前
3秒前
潇潇雨歇完成签到,获得积分10
5秒前
炸弹完成签到,获得积分10
6秒前
科研小菜狗完成签到 ,获得积分10
7秒前
路过发布了新的文献求助10
7秒前
YifanWang应助潇潇雨歇采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
12秒前
大宝君发布了新的文献求助10
17秒前
18秒前
鳗鱼忆山完成签到 ,获得积分10
19秒前
focus发布了新的文献求助10
19秒前
酷波er应助嗯对我呀采纳,获得10
23秒前
犬来八荒发布了新的文献求助10
24秒前
无极微光应助小赵采纳,获得20
24秒前
如沐春风完成签到,获得积分10
29秒前
如沐春风发布了新的文献求助10
33秒前
36秒前
上官若男应助每天睡不醒采纳,获得10
38秒前
科研通AI6应助犬来八荒采纳,获得30
40秒前
lhr发布了新的文献求助50
40秒前
41秒前
43秒前
44秒前
杨桃发布了新的文献求助10
45秒前
46秒前
犬来八荒完成签到,获得积分10
46秒前
47秒前
可爱的函函应助focus采纳,获得10
48秒前
嗯对我呀发布了新的文献求助10
51秒前
小王子完成签到 ,获得积分10
58秒前
YifanWang应助潇潇雨歇采纳,获得10
58秒前
1分钟前
NexusExplorer应助铭铭采纳,获得10
1分钟前
科目三应助清风采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611845
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890131
捐赠科研通 4727427
什么是DOI,文献DOI怎么找? 2545932
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236