工具变量
可识别性
异方差
估计员
计量经济学
鉴定(生物学)
估计
潜变量
回归
经济
计算机科学
统计
数学
植物
生物
管理
作者
Peter Ebbes,Michel Wedel,Ulf Böckenholt
摘要
Abstract A review of the econometric literature on instrumental variables (IV) estimation shows that the performance of traditional IV estimation relies critically on the quality of the instruments. We discuss three different approaches that do not require the availability of observed instrumental variables: the ‘Higher Moments’ (HM) estimator, the ‘Identification trough Heteroscedasticity’ (IH) estimator, and the ‘Latent Instrumental Variable’ (LIV) approach. These methods attempt to identify the regression parameters not through observed instruments but by using other information that enables identifiability. The performance of these methods is illustrated on simulated and empirical data. Copyright © 2009 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI