无线传感器网络
计算机科学
传感器网络
异常检测
视觉传感器网络
软件部署
可视化
无线传感器网络中的密钥分配
实时计算
投影(关系代数)
移动无线传感器网络
异常(物理)
数据可视化
数据挖掘
分析
比例(比率)
分布式计算
计算机网络
无线网络
无线
电信
地理
操作系统
物理
地图学
凝聚态物理
算法
作者
Qi Liao,Lei Shi,Yuan He,Rui Li,Zhong Su,Aaron Striegel,Yunhao Liu
标识
DOI:10.1145/2018436.2018521
摘要
Diagnosing a large-scale sensor network is a crucial but challenging task due to the spatiotemporally dynamic network behaviors of sensor nodes. In this demo, we present Sensor Anomaly Visualization Engine (SAVE), an integrated system that tackles the sensor network diagnosis problem using both visualization and anomaly detection analytics to guide the user quickly and accurately diagnose sensor network failures. Temporal expansion model, correlation graphs and dynamic projection views are proposed to effectively interpret the topological, correlational and dimensional sensor data dynamics and their anomalies. Through a real-world large-scale wireless sensor network deployment (GreenOrbs), we demonstrate that SAVE is able to help better locate the problem and further identify the root cause of major sensor network failures.
科研通智能强力驱动
Strongly Powered by AbleSci AI