凝聚态物理
物理
六边形晶格
反铁磁性
海森堡模型
相变
各向异性
格子(音乐)
对称性破坏
涡流
各向同性
基态
而量子蒙特卡罗
蒙特卡罗方法
量子力学
统计
热力学
数学
声学
作者
Ryo Tamura,Naoki Kawashima
标识
DOI:10.1143/jpsj.80.074008
摘要
Using a Monte Carlo method, we study the finite-temperature phase transition in the two-dimensional classical Heisenberg model on a triangular lattice with or without easy-plane anisotropy. The model takes account of competing interactions: a ferromagnetic nearest-neighbor interaction J 1 and an antiferromagnetic third nearest-neighbor interaction J 3 . As a result, the ground state is a spiral spin configuration for -4 < J 1 / J 3 < 0. In this structure, global spin rotation cannot compensate for the effect of 120° lattice rotation, in contrast to the conventional 120° structure of the nearest-neighbor interaction model. We find that this model exhibits a first-order phase transition with breaking of the lattice rotation symmetry at a finite temperature. The transition is characterized as a Z 2 vortex dissociation in the isotropic case, whereas it can be viewed as a Z vortex dissociation in the anisotropic case. Remarkably, the latter is continuously connected to the former as the magnitude of anisotropy decreases, in contrast to the recent work by Misawa and Motome [J. Phys. Soc. Jpn. 79 (2010) 073001] in which both the transitions were found to be continuous.
科研通智能强力驱动
Strongly Powered by AbleSci AI