Triboelectric nanogenerators as self-powered active sensors

摩擦电效应 无线传感器网络 信号(编程语言) 能量收集 数码产品 无线 材料科学 压力传感器 电势能 能量(信号处理) 计算机科学 电气工程 机械工程 工程类 电信 复合材料 统计 程序设计语言 数学 计算机网络
作者
Sihong Wang,Long Lin,Zhong Lin Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:11: 436-462 被引量:874
标识
DOI:10.1016/j.nanoen.2014.10.034
摘要

Abstract The development of internet of things and the related sensor technology have been a key driving force for the rapid development of industry and information technology. The requirement of wireless, sustainable and independent operation is becoming increasingly important for sensor networks that currently could include thousands even to millions of sensor nodes with different functionalities. For these purposes, developing technologies of self-powered sensors that can utilize the ambient environmental energy to drive the operation themselves is highly desirable and mandatory. The realization of self-powered sensors generally has two approaches: the first approach is to develop environmental energy harvesting devices for driving the traditional sensors; the other is to develop a new category of sensors – self-powered active sensors – that can actively generate electrical signal itself as a response to a stimulation/triggering from the ambient environment. The recent invention and intensive development of triboelectric nanogenerators (TENGs) as a new technology for mechanical energy harvesting can be utilized as self-powered active mechanical sensors, because the parameters (magnitude, frequency, number of periods, etc.) of the generated electrical signal are directly determined by input mechanical behaviors. In this review paper, we first briefly introduce the fundamentals of TENGs, including the four basic working modes. Then, the most updated progress of developing TENGs as self-powered active sensors is reviewed. TENGs with different working modes and rationally designed structures have been developed as self-powered active sensors for a variety of mechanical motions, including pressure change, physical touching, vibrations, acoustic waves, linear displacement, rotation, tracking of moving objects, and acceleration detection. Through combining the open-circuit voltage and the short-circuit current, the detection of both static and dynamic processes has been enabled. The integration of individual sensor elements into arrays or matrixes helps to realize the mapping or parallel detection for multiple points. On the other hand, the relationship between the amplitude of TENG-generated electrical signal and the chemical state of its triboelectric surface enables TENGs to function as self-powered active chemical sensors. Through continuous research on the TENG-based self-powered active sensors in the coming years to further improve the sensitivity and realize the self-powered operation for the entire sensor node systems, they will soon have broad applications in touch screens, electronic skins, healthcare, environmental/infrastructure monitoring, national security, and more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助西西歪采纳,获得10
刚刚
北城发布了新的文献求助10
1秒前
1秒前
木头123发布了新的文献求助10
1秒前
文文君完成签到,获得积分10
2秒前
wo发布了新的文献求助10
2秒前
小宅宅完成签到,获得积分10
2秒前
晶晶发布了新的文献求助10
2秒前
小周的读研日常完成签到,获得积分10
2秒前
小蘑菇应助称心问枫采纳,获得10
2秒前
smoli发布了新的文献求助10
3秒前
甜美河马发布了新的文献求助10
3秒前
落桑完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
酷酷珠完成签到,获得积分10
4秒前
科研通AI6应助Hang采纳,获得10
4秒前
DCX发布了新的文献求助10
4秒前
4秒前
4秒前
狐尾完成签到,获得积分10
5秒前
5秒前
6秒前
阮玖关注了科研通微信公众号
7秒前
7秒前
苦学僧完成签到,获得积分10
7秒前
贪玩语蓉发布了新的文献求助10
7秒前
汉堡包应助wiwi采纳,获得30
7秒前
7秒前
7秒前
小猴子应助懵懂的绿真采纳,获得10
7秒前
YanDongXu完成签到,获得积分10
7秒前
秦长春发布了新的文献求助10
7秒前
71333197发布了新的文献求助10
8秒前
8秒前
明天的我发布了新的文献求助10
8秒前
今晚打老虎完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163